STEM - Internal Home
 
 

Reviews

 

2012

2011

2010

 

2009

 

2008

 

2007

 

2006

 

2005

 

2004

 

2003

 

2002

 

2000

 

Older

 
  1. Pennycook et al. "Aberration-corrected scanning transmission electron microscopy: from atomic imaging and analysis to solving energy problems." Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences (2009) vol. 367 (1903) pp. 3709-3733.
  2. Zinkle, S. J., G. E. Ice, M. K. Miller, S. J. Pennycook and X. L. Wang, "Advances in microstructural characterization," Journal of Nuclear Materials, 386-388, 8-14 (2009).
  3. van Benthem, K. and S. J. Pennycook, "Imaging and spectroscopy of defects in semiconductors using aberration corrected STEM," Appl. Phys. A, 96, 161-169 (2009).
  4. Pennycook, S. J., M. Varela, A. R. Lupini, M. P. Oxley and M. F. Chisholm, "Atomic-resolution spectroscopic imaging: past, present and future," J. Electron Microsc., 58, 87-97 (2009).
  5. K. van Benthem, S.J. Pennycook, in: J.A. Schwartz, C.I. Contescu, K. Putyera (Eds.), Dekker Encyclopedia of Nanoscience and Nanotechnology, vol. 2, Taylor and Francis, 2008, p. 1217.
  6. J.R. McBride, A.R. Lupini, S.J. Pennycook, S.J. Rosenthal, in: J.A. Schwartz, C.I. Contescu, K. Putyera (Eds.), Dekker Encyclopedia of Nanoscience and Nanotechnology, vol. 1, Taylor and Francis, 2008, p. 1.
  7. S. J. Pennycook, M. F. Chisholm, K. van Benthem, A. G. Marinopoulos and S. T. Pantelides, "From 3D Imaging of Atoms to Macroscopic Device Properties," pp. 259-281 in Defects in Microelectronic Materials and Devices, ed. by D. Fleetwood, R. Schrimpf and S. T. Pantelides, CRC Press, Boca Raton, Florida (2008).
  8. N. de Jonge, R. Sougrat, D. B. Peckys, A. R. Lupini and S. J. Pennycook, "Three-Dimensional Aberration-Corrected Scanning Transmission Electron Microscopy for Biology," pp. 13.1-13.27 in Nanotechnology in Biology and Medicine, ed. by T. Vo-Dinh, CRC Press, Boca Raton, Florida, 2007.
  9. S. J. Pennycook, A. R. Lupini, M. Varela, A. Y. Borisevich, Y. Peng, M. P. Oxley and M. F. Chisholm, "Scanning Transmission Electron Microscopy for Nanostructure Characterization," pp. 152-191 in Scanning Microscopy for Nanotechnology: Techniques and Applications, ed. by W. Zhou and Z. L. Wang, Springer (2006).
  10. Eiji ABE and Stephen J. Pennycook, "Ultrahigh-resolution Scanning Transmission Electron Microscopy with Sub-Ångstrom-Sized Electron Beams," Journal of Crystallography Society of Japan, Vol. 47, pp. 26-31, (2005).
  11. W. Grogger, M. Varela, R. Ristau, B. Schaffer, F. Hofer, ad K.M. Krishnan, "Energy-Filtring Transmission Electron Microscopy on the Nanometer Length Scale" (PDF 806K), Journal of Electron Spectroscopy 143, 139-147 (2005).
  12. M. Varela, A. R. Lupini, K. van Benthem, A. Y. Borisevich, M. F. Chisholm, N. Shibata, E. Abe, and S. J. Pennycook, "Materials Characterization in the Aberration-Corrected Scanning Transmission Electron Microscope" (PDF 1041MB), Annual Reviews of Materials Research 35, 539-569 (2005).
  13. A. Bleloch and A. Lupini, "Imaging at the Picoscale" (PDF 1045 KB), Materials Today 7(12), 42-48, (2004).
  14. S. J. Pennycook, A. R. Lupini, M. Varela, A. Borisevich, Y. Peng, and P. D. Nellist, "Quantum Mechanical Resolution Limits to Imaging and Spectroscopy in the Transmission Electron Microscope" (PDF 928 KB), p. 126 in From the Atomic to the Nano Scale, edited by J. McGuire et al., Old Dominion University, 2003.
  15. S. J. Pennycook, A. R. Lupini, A. Borisevich, M. Varela, Y. Peng, P. D. Nellist, G. Duscher, R. Buczko and S. T. Pantelides, "Transmission Electron Microscopy: Overview and Challenges" (PDF 1.5 MB) p. 627 in  Characterization and Metrology for ULSI Technology, AIP Conference Proceedings Vol 683, New York : American Institute of Physics, 2003.
  16. S. J. Pennycook, “Structure Determination through Z-Contrast Microscopy,” (PDF 1.2MB) p. 173 in Advances in Imaging and Electron Physics, Vol 123, ed. by P. G. Merli, G. Calestani, and M. Vittori-Antisari, 2002.
  17. S. J. Pennycook, C. Prouteau, M. F. Chisholm, D. K. Christen, D. Verebelyi, D. P. Norton, M. Kim, N. D. Browning, J. P. Buban, Y. Pan, and J. F. Hamet, “The Relationship Between Grain Boundary Structure and Current Transport in High-Tc Superconductors,”(PDF 1.6 MB), Chapter 6 in Studies of High Temperature Superconductors: Microstructural Studies in HTSC, Vol 30, ed. by A. V. Narlikar, Nova Science Publishers, New York, 2000.
  18. P. D. Nellist and S. J. Pennycook "The Principles and Interpretation of Annular Dark-Field Z-contrast imaging," p.147-203 in Advances in Imaging and Electron Physics, 2000.
  19. S. J. Pennycook and P. D. Nellist, "Z-Contrast Scanning Transmission Electron Microscopy," p. 161 in Impact of Electron Scanning Probe Microscopy on Materials Research, ed. by D. Rickerby, G. Valdrè, and U. Valdrè, Kluwer Academic Publishers, The Netherlands, 1999
  20. S. J. Pennycook, N. D. Browning, M. M. McGibbon, A. J. McGibbon, D. E. Jesson, and M. F. Chisholm, “Direct Determination of Interface Structure and Bonding with the Scanning Transmission Electron Microscope,”
    Philos. T. Roy. Soc. A 354, 2619 (1996).
  21. S. J. Pennycook, D. E. Jesson, A. J. McGibbon, P. D. Nellist, “High Angle Dark Field STEM for Advanced Materials,” J. Electron Microsc. 45, 36 (1996).
  22. N. D. Browning and S. J. Pennycook, “Atomic-Resolution Electron Energy-Loss Spectroscopy in the Scanning Transmission Electron Microscope,”
    J. Microsc-Oxford 180, 230 (1995).
  23. S. J. Pennycook, N. D. Browning, D. E. Jesson, M. F. Chisholm, and A. J. McGibbon, “Atomic-Resolution Imaging and Spectroscopy of Semiconductor Interfaces,” Appl. Phys. A 57, 385 (1993).
  24. S. J. Pennycook, “Z-Contrast Transmission Electron-Microscopy-Direct Atomic Imaging of Materials,” Annu. Rev. Mater. Sci. 22, 171 (1992)
  25. S. J. Pennycook, “Atomic-Scale Imaging of Materials Chemistry by Z-Contrast Scanning Transmission Electron Microscopy,” Anal. Chem. 64, 263 A (1992).
  26. S. J. Pennycook, “Z-Contrast STEM for Materials Science,” Ultramicroscopy 30, 58 (1989.
  27. S. J. Pennycook, “High Resolution Electron Microscopy and Microanalysis,” Contemp. Phys. 23, 371 (1982).

 

   
   
   

 Oak Ridge National Laboratory