H
{,

ELSEVIER

Ultramicroscopy 78 (1999) 111-124

ultramicroscopy

Incoherent imaging using dynamically scattered
coherent electrons

P.D. Nellist**, S.J. Pennycook®*

*Nanoscale Physics Research Lab., School of Physics and Astronomy, The University of Birmingham, Birmingham B17 8DJ, UK
YOak Ridge National Laboratory, Solid State Division, P.O. Box 2008, Oak Ridge, TN 37831-6030, USA

Received 11 September 1998; received in revised form 18 December 1998

Abstract

We use a Bloch wave approach to show that, even for coherent dynamical scattering from a stationary lattice with no
absorption, annular dark-field imaging in a scanning transmission electron microscope gives a direct incoherent structure
image of the atomic-column positions of a zone-axis-aligned crystal. Although many Bloch waves may be excited by the
probe, the detector provides a filtering effect so that the 1s-type bound states are found to dominate the image contrast
for typical experimental conditions. We also find that the column intensity is related to the transverse kinetic energy of
the 1Is states, which gives atomic number, Z, contrast. The additional effects of phonon scattering are discussed, in
particular the reasons why phonon scattering is not a prerequisite for transverse incoherence. © 1999 Elsevier Science

B.V. All rights reserved.
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Keywords: Scanning transmission electron microscopy (STEM); Electron diffraction and elastic scattering theory; Image simulation

1. Introduction

Experimentally, it is found that annular dark-field
(ADF) imaging in a scanning transmission electron
microscope (STEM) of crystals in a zone-axis ori-
entation gives direct structure images of the atomic
column positions (for examples see Refs. [1-4]).
The image is described as being incoherent, which
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means that the image intensity is a convolution
between the intensity of the microscope’s point-
spread function, which in this case is the illumina-
ting probe, and an object function with localised
peaks at the column positions. This contrasts with
conventional coherent high-resolution transmis-
sion electron microscopy (HRTEM), which in
general does not give intuitively interpretable im-
ages (see for example Ref. [5]), because of multiple
scattering of the electron wave in the crystal and the
coherent nature of the image formation. The usual
way to proceed in HRTEM is to simulate the images
formed from trial structures and to match those to
the experimental data. Because of the simple nature
of incoherent imaging as a convolution, and the
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lack of a phase problem, quantitative image analy-
sis methods such as Bayesian analysis become feas-
ible which require much less prior information than
having to construct likely trial object functions
with which to simulate HRTEM images [6].

In a STEM, the image forming objective lens is
optically before the specimen, and focusses an im-
age of the small and highly coherent field-emission
gun to form an illuminating probe at the specimen.
In state-of-the-art instruments, this probe can have
atomic-scale dimensions. It is scanned over the
specimen in a raster, and the signals from various
detectors can be plotted as a function of probe
position to form an image. Here we are considering
the ADF detector, which collects electrons trans-
mitted through the specimen but scattered to
relatively high angles. Typically, it collects elec-
trons over a large range of angles, say from 30 to
100 mrad in a 300 kV instrument.

Some of the previous work in the theory of ADF
image formation [7] has made the reasonable
assumption that, since the intensity detected at high
angles is largely thermal diffuse scattering, each
atom could be considered as an independent inco-
herent scatterer. Later analysis of image formation
for thin specimens [8,9] showed that phonon
scattering was not a prerequisite for incoherent
imaging, and that the detector geometry could de-
stroy many of the coherent interference effects. By
the principle of reciprocity in STEM imaging
[10,11], the ADF detector is equivalent to using
a large incoherent illuminating source in a conven-
tional HRTEM that has the image-forming objec-
tive lens optically after the specimen. In light optics,
Lord Rayleigh [12] showed that large incoherent
illumination made the specimen effectively self-lu-
minous and destroyed coherent interference effects,
and the analogous effect happens with electrons in
ADF imaging.

The major strength of ADF imaging, however, is
that it gives structure images free of contrast rever-
sals over a large range of thicknesses, thereby
overcoming the problems caused by dynamical dif-
fraction in HRTEM imaging. Here we use a Bloch
wave approach to show how the detector geometry
can give rise to an incoherent image even with
dynamical diffraction, and that phonon scattering
is not required to form an incoherent image. The

destruction of interference effects can be seen in
the expressions derived, and these are confirmed by
calculations for the case of atomic resolution ADF
STEM imaging of GaAs in the {1 10) zone axis
orientation.

2. Bloch wave excitation by a focussed probe
2.1. Theory

We start by considering the electron density
within a crystal when a focussed probe is incident at
its surface using an identical approach to that of
[13] using the Bloch wave formulation of dynam-
ical electron diffraction (see for example Ref. [ 14]).
The electron wave function within the crystal,
V(R, z), is a solution to the Schrodinger equation

(V2 + 4n2k2 + 2meV (R, 2)/hAW(R, z) = O (1)

with the incident focussed probe forming the en-
trance surface boundary condition. Throughout
this paper we will often write real and reciprocal
space vectors in their components perpendicular
and parallel to the optic axis, thus r = (R, z) and
k = (K, k,); ko is the magnitude of the electron wave
vector outside the crystal, m is the relativistic elec-
tron mass and V is the crystal potential. Since we
are considering a periodic crystal, we seek Bloch
wave solutions to the Schrodinger equation of the
form

(r) =) Dexpl — i2n(k+g)- r]. )

Making the high-energy approximation and also
neglecting the higher-order Laue zone (HOLZ)
reflections (which Amali and Rez [15] have sugges-
ted have only a small contribution to the ADF
image), the Bloch wave Fourier coefficients, @,, can
be found by matrix diagonalisation, along with
their corresponding eigenvalue wave vectors.

The excitation of each Bloch state is found using
the boundary conditions of matching the incident
wave function with the crystal wave function at the
entrance surface. It is easiest to first consider
plane-wave illumination. The transverse compon-
ent, K;, of the incident wave must match the
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transverse component of the excited Bloch states,
so we can write the excited Bloch state compo-
nents and wave vectors as being a function of
K;,. Because of the orthogonality between the
Bloch states, the amplitude of excitation of the jth
Bloch state for plane-wave illumination is @Y (K;),
so that

YR,z K) =) ) 98" (K)®) (K)

x exp{ — i2n[(K; + ¢)‘ R + kY(K)z]}, (3)
where kY)(K;) is the longitudinal component of the
wave vector corresponding to the jth Bloch state
for an incident plane wave with transverse compon-
ent, K;. The wave function in the crystal is therefore
the sum of many Bloch states propagating at differ-
ent rates through the crystal and interfering
constructively or destructively with one another
depending on the depth.

So far we have considered plane-wave illu-
mination with a single wave vector, but the wave
function for a focussed electron probe has a range
of wave vectors, all lying within the incident fo-
cussed cone of illumination. All the partial plane-
wave components of the incident cone may
be summed in amplitude to give the probe wave
function,

P(R — Ry) = JA(K Jexp[ — 127nK; - R]

x exp[i2nK;- Ry] dK, 4)

where A(K;), known as the aperture function, is the
complex amplitude of the partial plane-wave with
transverse wave vector, K;. In a STEM, it usually
has a magnitude given by a circular top-hat func-
tion with radius, o, that of the objective aperture,
and it has a phase, y(K;), controlled by the lens
aberrations and the defocus. Eq. (4) also shows that
the probe position is defined by a planar phase
ramp in K; space across the illuminating cone, with
a slope controlled by the probe location vector, R,,.
We can now construct the wave function within the
crystal with STEM probe illumination by integrat-
ing Eq. (3) in amplitude over all incident partial

plane waves,

V(R z, Ro) = jZZA K)PY*(K) P (K)

xexp{ —i2n[(K; + g)' R — K;" R,

+ kP(Ky)z]} dK; ®)

and the electron density in the crystal is the
modulus squared of Eq. (5), [¥/(R, z, Ro)*. Eq. (5)
shows that, in general, the electron wave function
depends in a complicated way on the probe posi-
tion and the depth in the crystal. If we assume that
the Bloch states and their associated eigenvalues,
kY are independent of K;, that is to say non-disper-
sive, then Eq. (5) can be written as a simple product
between the incident probe and a sum of states,

Y(R, z, Ro) = P(R — Ry)y, ®f*pY(R)

x exp[ — i2nk,z], (6)
where
dY(R) Z (D‘”exp[ i2rng- R] (7)

is a real-space representation of the jth Bloch state.
The Bloch states will only be non-dispersive over
the range of K; in the incident cone if their real
space extent is much smaller than the illuminating
probe, and this will only generally be true for the
tightly bound 1s-type states. The conditions for
factorisation of the probe from the wave function
have been examined in greater detail by Broeckx
et al. [16], who treated all non-1s states as weak-
phase terms, which was found to be valid for thick-
ness up to the order of 10 nm. The incoherent
nature of ADF imaging is experimentally found to
hold up to much greater thicknesses.

2.2. Calculations

We have simulated the electron wave function
using a Bloch wave calculation of GaAs (1 10) at
300 kV, which has the classic “dumbbell” pairs of
Ga and As columns in its projected structure
(Fig. 1). A 265-beam calculation was performed for
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Fig. 1. (a) An ADF STEM image of GaAs <1 10) taken using
a VG Microscope HB603U STEM (300 kV, Cs = 1 mm) show-
ing the dumbbell structure. (b) A profile plot of the “dumbbells”
highlighted in (a) showing the polarity of the lattice with the
Z-contrast nature of the image giving making the As column
more intense.

each of 709 incident partial plane waves in an
illuminating cone of semi angle 10 mrad. The effects
of spherical aberration and defocus were not in-
cluded, and we have neglected absorption and
HOLZ reflections.

At a thickness of 5 nm (Fig. 2), it can be seen that
the approximation of a background similar to the
incident probe density plus strongly excited 1s
states hold well. The intensity in the strong peaks at
the column sites, arising from the excitation of the
1s states, is close to being proportional to the probe
intensity at the column site, and so is dependent on
the column position. In general, as the probe posi-
tion changes, the excitation of the Bloch states will
change. The probe position is encoded in the K;- R,
phase term of Eq. (5), and the integral over
K; couples this to the excitation coefficient of the
Bloch state, ®§*(K;), which describes the geometric
form of the Bloch state at the entrance surface, and
how well it matches the incident probe wave
function. The dispersion phase term, kY(K))z, de-
scribes the propagation and interference between
the states through the thickness of the crystal, thus
the contribution of the different states can also
depend on depth. The depth dependence of the
electron wave function can be seen in Figs. 3 and 4.
At a depth of 125 A with the probe located over
the Ga column, the 1s state is less dominant
than at 50 A, so other states must be more

Fig. 2. The calculated electron density: (a) of the incident probe used for these calculations; (b) at a depth of 5 nm in a crystal of GaAs
{1 10) with the probe centred between the Ga and As columns; (c) as for (b) but with the probe located over the Ga column. The grey
scale follows the fourth-root of the density to show the detail. The strong peaks at the column sites arise from the Is states.
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Fig. 3. The calculated electron density in a crystal of GaAs {1 1 0) at a depth of 12.5 nm with the probe: (a) located over the Ga column;
(b) centred between the Ga and As columns. The greyscale follows the fourth-root of the density to show the detail. In (b) the peaks are
displaced from the column sites showing that the 1s states are no longer dominant.
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Fig. 4. Profile plots of electron density along a line through the dumbbell pair at a depth of 5 nm with the probe over the Ga column
(corresponds to Fig. 2c), and at a depth of 12.5 nm with the probe over the Ga column and also centred between the two columns
(correspond to Fig. 3). At a depth of 12.5 nm the 1s states are much less dominant.

excited. When the probe is moved to the centre
of the dumbbell, the peaks in density are dis-
placed away from the column centres, and a
much more complicated profile is seen. It is clear

that the 1s states are not playing a major role
here, and that a simple multiplicative object func-
tion based on 1s state dominance cannot be
applied.
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3. Selection of Bloch states by the ADF detector

Having seen that the electron density within the
crystal for an incident probe depends in a complic-
ated way on the depth in the crystal and the probe
position, we must now try to understand why the
ADF image formed in a STEM is a direct structure
image of the column positions, as observed experi-
mentally. Taking the intensity of the Fourier trans-
form of Eq. (5) with respect to R gives the intensity
of the coherent CBED pattern in the detector plane
of the STEM as a function of the transverse com-
ponent of the exit-surface wave vector, K;. Integrat-
ing this over the detector function, D(K;), gives the
measured ADF intensity as a function of probe
position, R,

IRy, z) = JD(Kf)

jA(Ki)Z DY*(K) P (K)
x exp{i2n[K;- R, — k(zj)(Ki)Z]}
2

X o(K; — K; — g) dK; | dK;. (®)

The Dirac o-function connects the initial and final
wave vectors of the scattered electrons through
Bragg scattering by the reciprocal lattice vector, g.
The expansion of the modulus squared in Eq. (8)
leads to a double integral with respect to K; and
double summations with respect to g and j. The
resultant complexity of the expression is because of
the mixture of real and reciprocal-space variables,
and taking the Fourier transform of Eq. (8) with
respect to the probe position gives a simpler expres-
sion

[g.=% DgJA(Ki)A*(Ki +0)

x Y, O (K) DG (K) P (K) P *(K)

Jik
x exp[ — i2nz(kV(K;) — kP(K)] dK;,  (9)

where Q is the image spatial frequency vector. The
algebraic steps in deriving Eq. (9) from Eq. (8) are
given in Appendix A.

Eq. (9) reveals some of the physics of the image-
forming process. The image contrast at a spatial
frequency of Q arises from the interference between

objective ki Ki+Q

aperture

specimen

ADF detector

Fig. 5. The scattering geometry for ADF imaging in the STEM.
The wave vectors indicate possible incident and scattered partial
plane waves that can contribute to the @ image spatial
frequency.

partial plane-waves in the incident cone that have
transverse components of wave vectors separated
by @ (Fig. 5). Two such partial plane-waves excite
a set of Bloch states each, represented by the sum-
mations over j and k. Interference can occur
between the scattering into the same Bragg beam, g,
by these two summations, and many such Bragg
beams are summed over by the detector. This
process can also be described as the formation of
a coherent convergent-beam electron diffraction
(CBED) pattern at the detector with interference in
the disc overlap regions being dependent on the
probe position [17]. Many of these disc overlap
regions are summed by the ADF detector to give
the final ADF image contrast. We have neglected
any disc overlap regions intersected by the inner
edge of the detector, which for a large detector will
have a small contribution.

A major advantage of the completely reciprocal
space formulation is that the summation over the
Bragg beams incident on the detector can be
performed first so that the effects of the detector can
be determined. The only functions involved in Eq.
(9) are the detector function, D,, and the g Fourier
components of the Bloch states, ®Y(K;) and
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@*(K;). These can be replaced by a single value
CilK) = ), D,®J(K,)Dy"*(K). (10)
9

The ADF detector can be described as a complete
detector over all scattering angles minus a circular
hole, thus neglecting the outer radius which is
usually so large that little scattering reaches it,
Eq. (10) can be evaluated also in real space (Appen-
dix B), to give

_ Jl(znuin|B|) ),
ClK) = b J g |G
x p®*(C + B, K;) dC dB, (11)

where B and C are dummy real-space variables of
integration, J is a first-order Bessel function of the
first kind, and u;, is the inner radius (expressed in
reciprocal space dimensions) of the ADF detector.

Substituting Cy(K;) into Eq. (9) shows that it is
acting as a kind of coherence function, controlling
the degree to which different j and k Bloch states
can interfere with each other to form the ADF
image. For some typical values, u;, = 30 mrad and
A= 1.9 pm, the first zero of the J;(2mu;,|B|)/2n|B|
term, which is acting as a coherence envelope, is at
|B| = 0.04 nm, so the domain of the integral in B is
extremely limited. If either of the states, j or k, are
slowly varying in this scale, which many of them
will be, then the C integral will approach being the
inner product of the states, which by orthogonality
will be equal to 65 and Cy(K;) will be negligible.
Thus Cj(K;) only allows interference effects to show
up in the ADF image between Bloch states that are
sharply peaked and whose peaks are physically
close such that they lie within a few tenths of an
angstrom of each other. A physical interpretation is
that the high-angle ADF detector is acting like
a high-pass filter (as it has been seen to do for thin
specimens [8]) acting on the exit-surface wave func-
tion. Only when the probe excites sharply peaked
Bloch states will the electron density be sharply
peaked.

3.1. The high-thickness limit

The summation over j and k in Eq. (9) can be split
into j = k terms, which are thickness independent,

and j#k terms, which do show a thickness
dependence. We refer to the j = k terms as the “self-
terms”, and the j # k terms as the “cross terms”. At
zero thickness the intensity detected by the ADF
detector must be zero so the sum over the cross
terms must be equal and opposite to the sum over
the self terms, which can also be verified by consid-
ering the orthogonality of the Bloch states. We can
now define a thickness-independent residual object
function (ROF) as being the sum over the self-
terms, and its Fourier transform is

0(Q, K) = Y. Cj;(K)DE*(K) PG (K)), (12)

which is simply a sum over normalised Bloch waves
weighted by the product of their excitation coeffic-
ient and Cj;(K;).

Eq. (9) also contains an integral over, K;, the
incident partial plane-waves in the probe. This is
present because complete disc overlaps in the
coherent CBED pattern are being detected, unlike
coherent imaging where a very small detector
would be used. As the thickness increases from
zero, the phase terms in Eq. (9) starts to destroy the
constructive, in-phase addition of all the cross
terms, so that it weakens and allows the ROF to
emerge in the total summation in Eq. (9), thus
starting to form image contrast. In particular, the
dispersion of the Bloch states, which is their vari-
ation of kY as a function of K;, will destroy j # k
terms because of the cycling of the phase term in
Eq. (9) over the K; integral. At the limit of infinite
thickness, Bloch wave dispersion will destroy all
cross terms, leaving only the ROF.

We have discussed how Eq. (11) acts as a Bloch
state filter, and it is now interesting to see which
states actually contribute to the ROF in a calcu-
lation of a typical imaging situation. Fig. 6 shows
that the ROF has peaks at the column positions,
and also that the As peak is higher than the Ga
peak, showing atomic number, Z, contrast. Break-
ing down the ROF into the contributions from
individual states (Fig. 7) shows that the contrast is
dominated by the two 1s states, one on the As
column and one on the Ga column, the other 263
states in the calculation only add a small uniform
background. Bloch state filtering by the ADF
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Fig. 6. The residual object function (ROF) for GaAs {1 1 0}, for
K;=(000) with an ADF inner radius of 27 mrad. Fourier
components out as far as the 004 components were used to form
the ROF. The grey scale follows the fourth-root of the density to
show the detail. The ROF directly represents the dumbbell
structure of GaAs <1 10) and also shows atomic number, Z,
contrast.

detector can also be seen in a table of C;; values
Table 1. Even though the 1s states are not the most
excited states, their C;; values are an order of mag-
nitude higher than for the other states, and

P.D. Nellist, S.J. Pennycook | Ultramicroscopy 78 (1999) 111-124

Table 1

Magnitudes of C;; and excitation coefficients at K; = (0 0 0) for
the normalised Bloch states with the highest six eigenvalues. For
states 1 and 2, the C;; values are more than an order of magni-
tude higher than the other states, and they approximately
proportional to Z2, whereas for these states the excitation values
are approximately proportional to 1/Z

State Magnitude of Cj; Magnitude of
excitation
1(1s As, Z =33) 0.0698 0.251
2 (1s Ga, Z = 31) 0.0631 0.263
3 0.0062 0.184
4 0.0031 0.000
5 0.0054 0.904
6 0.0025 0.000

the C;; values also create the Z-contrast in the
object function.

3.2. The high-angle limit of the ROF

The dependence of the ROF, and thus the image
contrast, on the composition of the atomic columns
is one of the extremely powerful attributes of ADF
imaging. The origin of the dependence is the in-
creased C;; value on the column with the higher Z,
but it is interesting to try and understand the phys-
ics of this process. At the high-angle limit of the
inner radius, we make the approximation that the

L — — State 1
= = = -State 2
5 States 1+2
2 All states
=
B
LI
Ne)
o
©
3 | Y
x
- A = -
—. =~ 1% _,,=-..\ ==
o A en_/ 3..-" 4 /5 6
Distance / A

Fig. 7. Profile plots through the dumbbell pair of the residual object function for the conditions in Fig. 6, but only including the
indicated states. State 1 is the As s state and State 2 is the Gals state, the other states only add a uniform background.
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coherence envelope in Eq. (11) is narrow compared
to the Bloch state functions. Making a Taylor’s
expansion of the Bloch state functions to first order
gives four terms,

J1(2mu;,|B))
Cjk(Ki) = 5jk - JVW

X J[qﬁ(j)(C, Kl) - %B : V¢(j)(C’ Kl)]

% [(b(k)*(C’ K) + %B' Vd)(k)*(c’ K)]dCdB, (13)

where we have shifted the origin of the C integral by
B2 relative to Eq. (11). Multiplying out the square
brackets, the first terms are just the inner product of
the states, which cancels with the ¢ ; term, the terms
linear in B are odd and so vanish over the symmet-
ric B integral, leaving only the final term remaining.
Since the grad operator is proportional to the quan-
tum mechanical momentum operator, p, Eq. (13)
may be written in Dirac notation

1 [J1(2mu;,|B))
CilK;) = FJW

x (GB-p¢ " (K)| 5B -ppU(K)>dB.  (14)

Forj = k, the integral over B is just another scaling
constant, thus

A . . 2mA
CiI) = 3 PPV K = 5 (T (19)

The Cj; values are therefore proportional to the
transverse kinetic energy expectation value for
the jth state, which is to be expected since states
with higher transverse kinetic energies will scatter
more strongly to the high angle detector.
Intuitively it can be noted that higher-Z atomic
columns will have 1s states with a higher transverse
kinetic energy, leading to Z contrast in the image.
Indeed, for these bound states, T ); will be propor-
tional to Z? if we assume an isolated column with
a Coulomb potential, by analogy with hydrogenic
1s orbitals. However, the excitation of such a
hydrogenic wave function for an incident plane

wave is proportional to 1/Z, so the overall weight-
ing for each column’s Bloch state is proportional to
Z. This result could also be obtained by assuming
an isolated column and invoking Virial theorem
(see for example Ref. [18]) which gives that {T);1is
proportional to the eigenvalue for that state. Sum-
ming Bloch states weighted by the product of their
excitation and eigenvalue gives a function propor-
tional to V(R), the projected potential [19]. Again,
each column would then be weighted by Z. The
calculations performed for GaAs <1 10) fit quite
well to the above dependencies on Z (Table 1).

We note that the Z weighting for each column
deviates from Rutherford scattering which predicts
a Z* scattering dependence of the intensity. Such
a dependence is found when a quantum mechanical
treatment is made using the first Born approxima-
tion, which assumes single-scattering conditions.
Indeed, models of ADF intensities for thin speci-
mens, including the low-thickness limit of the
approach given here, suggest a Z* column depend-
ence on intensity. The Z dependence arises at the
high-thickness limit because of the effects of coher-
ent multiple scattering in this purely coherent
model.

4. Incoherent imaging

We have seen how the ADF detector gives rise to
a filtering function that selects extremely localised
Bloch states in the image forming process. By their
localised nature, especially as they are much small-
er then the illuminating probe, such states are ex-
tremely non-dispersive and we can neglect the
K; dependence of the ROF over the range of partial
plane-waves in the incident cone. The high-thick-
ness limit image Fourier transform can then be
written as

[(Q.z— ) =00 JA(Ki)A*(Ki +0)dk;,  (16)

having removed the ROF from the integral over
K; in Eq. (9). This integral is now the autocorrela-
tion function of the aperture function, A(K;), and
Eq. (16) is just the product between this autocorre-
lation and the Fourier transform of the ROF.
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Transforming Eq. (16) back to real space, the
product becomes a convolution between the ROF
and the probe intensity, because the Fourier trans-
form of an autocorrelation of a given function is the
modulus squared of the Fourier transform of that
function, which, for the aperture function, is
the modulus squared of the probe wave function,
thus

I(Ry, z — 00) = O(Ry)®|P( — Ro)|2
= JO(Ro)IP(R —R,)* dR, (17)

a result which has also been shown to hold true for
thin specimens [6].

We have now shown that the ADF detector
filters the Bloch states so that the 1s states domin-
ate the contrast, and that since their dispersions are
very small their scattering intensity as a function of
probe position varies in proportion to the probe
intensity at the column site. What happens if the
probe is large enough to excite both the Ga and As
Is states, as can be seen in Fig. 2? Since they are
both strong contributors to the ADF image
contrast, will we see coherent interference effects
between these columns? In terms of the j, k summa-
tion in Eq. (9), this question can be rephased as:
since C;; and C,, are relatively large (where the
subscripts 1 and 2 refer to the As 1s state and the
Ga s state, respectively), is the C,, interference
cross term significant? The answer is no, since for
the GaAs <110) calculation presented here,
Ci,(K; = 0) = — 0.0013, which is more than an or-
der of magnitude smaller than the values for the 1s
states in Table 1. In comparison, a small detector
that detects only the g =(000) beam, which by
reciprocity is the situation for bright-field imaging,
gives a value of C,(K; = 0) = 0.0661, showing that
intercolumn interference is extremely important for
coherent imaging.

Referring back to Eq. (11), it is not surprising
that the 1s states on the Ga and As columns do not
interfere. The width of the coherence envelope func-
tion controlling the domain of the B integral is
about 0.04 nm, which is well below the 0.14 nm
separation of the Ga and As columns in the {1 1 0)
projection, so they are acting as independent scat-
terers. Incoherent imaging can now be understood

in terms of the features in the coherent CBED
pattern. Interference between all the Bloch waves
excited by the incident probe gives rise to complic-
ated features in the discs and overlap regions in the
detector plane. The ADF detector has a geometry
which is many times larger than a single disc, so
most of the interference features are averaged out
and their effects not seen in the ADF image. Only
fluctuations in intensity, as the probe is scanned,
that are uniform over large areas of diffraction
space will give rise to image contrast, and these
fluctuations mostly come from the very localised 1s
states in the wave function. Multislice simulations
have also been performed to study the conditions
on the ADF detector for incoherent imaging [20].

It has been seen in earlier Bloch wave calcu-
lations [13] that, when a small probe is incident
over an atomic column, channelling initially causes
the intensity to be focussed tightly on that column
but as the thickness increases some intensity can
appear on neighbouring columns as the wave func-
tion apparently tunnels between them; an effect
sometime called “cross talk”. Such cross talk
obviously has implications both for the incoherent
nature of ADF imaging, and also for high spatial
resolution microanalysis such as column-by-col-
umn electron energy-loss spectroscopy [21]. By
examining the thickness-dependent part of Eq. (5),
the spreading of the probe intensity as it propagates
through the crystal is caused by the dispersion of
the Bloch states eigenvalues, k.. A probe displaced
from the origin will give rise to a phase variation
with respect to K; given by the K;- R, term, and for
a non-dispersive state this will lead to an incoher-
ent imaging model as given in this section. If]
however, the thickness becomes large enough for
the kY(K;)z term to counteract the probe dispace-
ment term, then increased excitation of the state
may occur. Thus the dispersions of the states can be
seen to be the origin of probe spreading as it propa-
gates.

The situation for ADF imaging is ameliorated by
the filtering action of the detector leaving the 1s
states dominant. The highly localised 1s states are
extremely non-dispersive and so cross talk from
these states is unlikely. Taking the Ga column as
the origin, a probe located over the adjacent As
column gives rise to a phase variation term that, for
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K, =(001), is equal to m/2. For the kY(K)z to
counteract this for the Ga 1s state requires a depth
in the crystal, z, of 1600 nm, much larger than any
specimen used in a typical imaging experiment.
Any cross talk occurring is therefore due to the less
bound Bloch states that have higher dispersions.
For ADF imaging the effects of intercolumn cross-
talk of the electron density do not interfere with the
incoherent nature of the image. We also note that
even in the 265-beam calculation performed here,
the dispersion of the 1s states had not yet
converged and so the thickness value given is
a lower limit. This shows that in the study of cross-
talk effects, care must be taken to ensure that
enough beams are included in the calculation.

5. Thermal diffuse scattering

It is remarkable that in a model that has only
included the effects of coherent diffraction and in-
terference within the crystal, the geometry of the
ADF detector has averaged over many of these
effects to give an image that can be described as an
incoherent convolution between the probe intensity
and an object function that has intensity highly
localised at the atomic column positions. The
thickness dependence of the ADF image is not so
well described by this model because the phase
term in Eq. (9) means that the decay in the cross
terms as a function of thickness, leaving the diag-
onal terms to dominate, will be oscillatory, and
relies on the dispersion surfaces to destroy the cross
terms, which will be slow as a function of thickness.
The analogy to this process in kinematical theory
would be relying on the curvature of the Ewald
sphere to destroy the coherence parallel to the
beam direction [22], which is inefficient due to the
very large incident wave vector.

Experimentally, large intensity oscillations as
a function of thickness are not observed in ADF
images of crystals. For a correct model of the thick-
ness dependence we must include the effects of
phonon scattering. At the scattering angles of the
ADF detector, the effects of the Debye-Waller
factor will be large in attenuating the coherent
Bragg beams and much of the intensity will be
thermal diffuse scattering (TDS) (see Fig. 1 of [23]).

Scattering by a phonon causes both a change in
the electron energy, rendering it effectively incoher-
ent with respect to the elastically scattered wave,
and changes its momentum. The change in mo-
mentum means that electrons are scattered out of
the Bragg beams, leading to their attenuation, into
a diffuse intensity. We can think of the spectrum
of phonon momenta giving rise to an integration
in our coherent model over a three-dimensional
range of K. Since the phonon scattered electrons
are incoherent with respect to the elastic scattering
and electron scattering by other phonons, the inte-
gral over K; would be in electron intensity in a sim-
ilar fashion to the integral over the detector. So
phonon scattering is also effective in destroying
coherence in the electron wave function, which is
why TDS is often described as being incoherent
scattering.

Using this intuitive idea of phonon scattering, we
can consider the coherence both transverse and
parallel to the beam. The ADF detector has already
destroyed the transverse coherence very effectively,
so there is little left for the phonon scattering to do.
Indeed, the momenta transferred to the electrons
by the phonons will typically be of the order of
a Brillouin zone, which is much smaller than the
geometry of the ADF detector. Thus in the trans-
verse direction, phonon scattering leads to a rela-
tively small redistribution of intensity over the
ADF detector, and has little effect. Transverse inco-
herent owes its origins to the large detector ge-
ometry and the large transverse momenta required
to be imparted to the electrons by elastic scattering.

As we have discussed, the detector is not efficient
at destroying coherence along the beam direction,
and here the phonon scattering will have a large
effect by providing what can be thought of as an
integral over K; parallel to the optic axis. It
is therefore clear that thickness oscillations will
be averaged out and qualitative use can be made
in interpreting changes in intensity in terms
of composition changes. For accurate quantit-
ative work, a model must be used that includes
a realistic model of phonon scattering (for example
[24]). Loss of coherence due to other effects,
such as a spead of electron energies, will also reduce
the degree of coherent interference within the
crystal.
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6. Conclusions

We have used a Bloch-wave model of coherent
dynamical diffraction of an incident STEM probe
by a crystal to show that the excitation of different
states depends in a complicated way upon the
thickness and the illuminating probe position.
Using an ADF detector to record the image inten-
sity, however, filters the states that can contribute
to the image contrast. In a calculation of GaAs
{110}, only highly localised, 1s-type bound states
are found to dominate. These are the states usually
depicted at the top of a dispersion surface diagram.
The flat, non-dispersive nature of these states gives
rise to an image that fits the incoherent imaging
model, and the detector is also found to break the
coherence between the 1s states on adjacent atomic
columns. Being able to treat the image as a simple
convolution between the incident probe intensity
and an object function consisting of highly local-
ised peaks at the atomic column positions is very
important for quantitative structure determination.
Not having to perform large multiple scattering
calculations for trial structural models, as is
performed for coherent imaging, opens the way
to using methods such as Bayesian analysis to cal-
culate the probability distribution of different
structures having given rise to the observed experi-
mental data [6].

The contribution of the 1s states to the image
contrast is also found to depend on the atomic
number, Z, of the species in the column, giving rise
to a Z-contrast image. The quantitative analysis of
image intensities to give compositional informa-
tion, however, usually requires a model that
includes the phonon scattering. Approaches taken
so far have involved long calculations that have
used statistical averages over atomic displacements
[25] or phases of the phonon scattering [26]. Since
we have shown that ADF imaging leads to a much
simpler and more intuituve image than coherent
imaging, we might expect that calculations of the
image intensity as a function of composition and
thickness also be simplified, which will be the sub-
ject of a future publication.

Itis interesting that ADF images are direct struc-
ture images, despite the complicated way that the
electron density within the crystal depends on the

thickness and probe position, including the spread-
ing of the probe onto neighbouring columns. This
illustrates the need to understand how the signal
being detected is generated within the crystal, in
addition to, and perhaps instead of, knowing the
electron density within the crystal. We have shown
how the ADF detector filters the electron density,
and similar effects may perhaps occur in other
forms of imaging, such as inelastic imaging using
core-state excitation. Highly localised excitations
may be preferentially excited by particular forms of
the electron density of the fast electron in the crys-
tal, for instance if it is peaked at atom sites. De-
tector geometry may also play a role here, and may
have implications for high spatial-resolution analy-
sis using EELS of zone-axis crystals.
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Appendix A

Here we show in greater detail the algebraic steps
involved in deriving Eq. (9) from Eq. (8). Before
expanding the modulus squared in Eq. (8), the
K; integral can be evaluated with the d-function
forcing K; to have the value K; — g. Expanding the
modulus squared in Eq. (8), by multiplying by the
complex conjugate, then gives double summations
over both the states and the reciprocal lattice vec-
tors,

I(Ry, z) = JD(Kf) Z A(K; — 9)A*(K; — h)

J.k.g.h
x DY* (K — g)PP(K; — g) x DY (K; — h)
x ®P* (K; — hyexp{i2n[(h — g)- R,
— k(;')(Kf —g)z + k‘z’"(Kf — h)z]} dK;. (A.1)
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Taking the Fourier transform of Eq. (A.1) with
respect to R, involves a further integral over R,
which can be performed first on the term involving
R, in the exponential,

fexp{iZn(h —9) Ry}expli2nQ- R,] dR,

=0oh —g+ 0), (A.2)

which can be substituted into Eq. (A.1) and the
summation over h evaluated with the o-function in
Eq. (A.2) forcing h to have the value g — Q,

1Q.z) = JD(Kf) Y, AK; — 9)A*(K; — g + Q)
Jik.g
x ®P*(K; — g)@Y(K; — 9)PY (K — g + Q)
x W% (K; — g + Q)exp{ — i2n[kV(K; — g)z
— K(K; — g + Q)z]} dK.. (A3)

We now make use of the following properties of
Bloch waves:

GPK + h) = DY (K). (A4)
KK + g) = KO(K), (A5)

where g and h are reciprocal lattice vectors, so that
Eq. (A.3) may be re-written as

= Y, |DK; + 9)AK)A*(K; + Q)P (K;)

Jik.g
x B (K) PG (K)P (K )exp{ — i2n[kY(K)z
— KO(K)2]} K, (4.9

where we have also resubstituted K; = K; —g.
Finally we make the approximation that since K; is
limited by the objective aperture radius, expressed
in A(K;), g is the dominant part of the argument of
D for a high-angle detector. Writing D(K; + g) as
D,, and a small rearrangement of Eq. (A.6), gives (9)
in the main text.

Appendix B

To derive Eq. (11) from Eq. (10) we start by
writing the Bloch state Fourier components as an

explicit Fourier transform,
CiK) =), Dgﬁb‘j’(c’ K)exp[i2ng- C]dC
E)

x ﬁb(”*w, K)exp[ — i2ng-B]dB. (B.1)

Treating D as a continuous function of g allows the
¢ summation to be also written as an integral

CulKs) = Jd)”)(C, Ki)Jcﬁ(k’*(B, k)

x JD(g)exp[—ﬁng (B—C)] dg dB dC,

(B.2)

where the ¢ integral can be identified as being the
inverse Fourier transform of D evaluated at B — C.
If D is described as an infinite two-dimensional
detector minus a circular hole, its inverse Fourier
transform is a 6 function minus the Fourier trans-
form of a disc

Cjk(Ki) = Jd)‘f)(c, KJJL;S“”*(B, Ki)
X [5 (B—C) —

Expanding the square bracket, the 6 function forces
B = C over the B integral, so that the C integral is
just the inner product between the states and evalu-
ates to Jj. Shifting the origin of the B integral so
that B = B’ + C gives,

J1(2mu;a| B — C))

dB dC.
2nB — C| ]

(B.3)

Cjk(Ki) = 5jk - J}f)“%C, Ki)

®xp 4 C, K)dB'dC,

y J J1(2mu;,|B'))
(B.4)

which, when rearranged slightly, gives Eq. (11) in
the main text.
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