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Abstract
Scanning probe-based ferroelectric domain imaging and patterning has
attracted broad attention for use in the characterization of ferroelectric
materials, ultrahigh density data storage, and nanofabrication. The viability
of these applications is limited by the minimal domain size that can be
fabricated and reliably detected by scanning probe microscopy. Here, the
contrast transfer mechanism in piezoresponse force microscopy (PFM) of
ferroelectric materials is analysed in detail. A consistent definition of
resolution is developed both for the writing and the imaging processes, and
the concept of an information limit in PFM is established. Experimental
determination of the object transfer function and the subsequent
reconstruction of an ‘ideal image’ is demonstrated. This contrast transfer
theory provides a quantitative basis for image interpretation and allows for
the comparison of different instruments in PFM. It is shown that
experimentally observed domain sizes can be limited by the resolution of the
scanning probe microscope to the order of tens of nanometres even though
smaller domains, of the order of several nanometres, can be created.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the decade since its invention [1, 2], piezoresponse
force microscopy (PFM) has become the primary tool for
imaging, spectroscopy, and manipulation of ferroelectric
materials on the nanoscale [3, 4]. Of particular interest are
applications of PFM for high resolution imaging of nanoscale
piezoelectric materials including ferroelectric nanocrystals [5]
and thin films [6], characterization of biological systems
such as calcified and connective tissues [7, 8], and nanoscale
domain patterning for data storage [9] and ferroelectric
lithography [10].

The unique feature of PFM is that the scanning probe
microscope (SPM) tip can be used both to write a domain
structure by applying a predefined dc voltage to the tip
inducing a local polarization reorientation in ferroelectric

1 Author to whom any correspondence should be addressed.

materials, and subsequently to read the resulting domain
structure. Due to the fact that a ferroelectric domain wall is
extremely narrow (one to two unit cells), domains of the order
of nanometres can be created. Therefore, PFM techniques
have been proposed as a basis for ferroelectric data storage.
Originally, most of the effort was concentrated on fabricating
a single domain with the smallest possible size. Depending
on the material, domains with diameters of 150 nm [11],
80 nm [12], 40 nm [13, 14], and 20 nm [15] have been
fabricated and imaged. Notably, a 20 nm bit size corresponds
to a data storage density of roughly 2 Tb in −2. However,
a determination of the minimal domain size from a single-
domain writing experiment is subject to several uncertainties
related to the electrostatic offsets in the signal and to unreliable
identification of the domain against the background noise.
Moreover, practical data storage applications necessitate the
creation of discrete ferroelectric bit arrays in which the
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interaction of neighbouring domains is forbidden. The reported
bit sizes in domain arrays are 360 nm [12], 94 nm [13],
66 nm [15], and 27 nm [16] when PFM is used to write and
to read the domain arrays.

While PFM is considered the primary tool for ferroelectric
characterization on the nanoscale, other SPM techniques have
also been employed for that purpose. In particular, scanning
nonlinear dielectric microscopy (SNDM) [17], based on purely
electrical detection, has been used to write and read domains as
small as 5 nm—the smallest domain size reported to date [18].
The smallest bit in an array as read by SNDM is 8 nm [19].

These applications require a quantitative assessment of the
ferroelectric domain structure that can only be accomplished
when the SPM image formation mechanism is well understood.
In particular, further progress in the field requires a consistent
definition of the spatial resolution to be established. This
would enable comparisons of results obtained by different
groups and on different experimental set-ups, allow the
fidelity of PFM data storage and ferroelectric lithography
to be determined, and unambiguously analyse statistical
characteristics of domains, domain wall geometries, and
domain distributions. Ultimately, quantitative knowledge of
the image formation mechanism allows material properties
and probe effects to be deconvoluted using a transfer function
approach. The definitions developed in this work are
applicable to any scanning probe technique provided that the
signal is linear with respect to materials properties.

2. PFM principles and theory

In PFM, a conductive tip, biased with Vtip = Vdc +
Vac cos(ωt), is brought into contact with the surface and the
electromechanical response of the surface is detected as the
first harmonic component of bias-induced tip deflection, d =
d0+d1ω cos(ωt +ϕ) [3, 4]. The phase of the electromechanical
response, ϕ, yields information on the polarization direction
below the tip. For c− domains (polarization vector pointing
into the surface) the application of a positive tip bias results
in the expansion of the sample and surface oscillations are in
phase with the tip voltage, ϕ = 0. For c+ domains, ϕ = 180◦.
Experimentally, the phase shift between antiparallel domains
can be less than 180◦ due to the presence of an electrostatic
offset or cross-talk inevitable at high (500 kHz–5 MHz)
imaging frequencies. The phase shift between antiparallel
domains thus provides a necessary (but not sufficient) criterion
for the veracity of the electromechanical signal. Traditionally,
the PFM signal is plotted either as a pair of amplitude–phase,
A = d1ω/Vac, ϕ, images or as a mixed signal representation in
which the piezoresponse, PR = A cos ϕ, is mapped. Hence, in
PFM, the resolution can be defined for either the mixed signal,
PR, or phase, ϕ, images. Here, we discuss the resolution theory
for the mixed signal and analyse the implications of using the
phase signal to determine resolution.

The resolution and probed volume in PFM is determined
by the structure of the electroelastic fields inside the material,
or more precisely as the voltage derivative of the normal
displacement field, ∂u3(x)/∂V . In general, a calculation of
the electroelastic fields in the material requires the solution
to a coupled problem, which is currently available only for a
transversally isotropic case. Moreover, electric field generated

outside the contact area is neglected [19, 20]. A simplified
approach suggested by Felten [21] and Gopalan [22] is based
on solving a decoupled problem. In this case: (a) the electric
field in the material is calculated using a rigid electrostatic
model (no piezoelectric coupling), (b) the strain or stress field
is calculated using constitutive relations for a piezoelectric
solid, and (c) the displacement field is evaluated using an
appropriate Green’s function for an isotropic or anisotropic
solid. Here we analyse the validity of this approach and
develop a general framework for contrast formation in PFM.

For linear piezoelectric materials, the relationship between
strain, displacement, and field is

xi = si j X j + dik Ek (1)

Di = di j X j + εik Ek, (2)

where xi and X j are the components of strain and stress
tensors, Di and Ek are the components of electric displacement
and electric field vectors, di j , si j and εik are components
of piezoelectric constant, elastic compliance, and dielectric
constant tensors in reduced Voigt notation.

The relative contributions of the different terms in
equations (1) and (2) are estimated using a simple model. For a
contact radius of ∼5 nm, corresponding to an indentation force
of ∼100 nN and a tip radius of curvature of 50 nm, the average
stress below the tip is 1.27 GPa. The electric field generated
by a tip bias of 10 V is 2 × 109 V m−1. For a typical elastic
compliance of the order of 10−11 m2 N−1 and a piezoelectric
constant equal to 50 pm V−1, the first term in equation (1) is
0.013 and the second is 0.1. In equation (2), assuming the
direct effect and a dielectric constant of 100, the first term is
0.064 and the second is 1.77. From this estimate, the dielectric
term dominates equation (2), thus justifying the use of the rigid
dielectric approximation for calculating the electric field in the
material. This analysis is corroborated by the exact solution
for a transversally isotropic material [19]. Moreover, it was
found that the contribution of the piezoelectric constants to
the effective elastic properties is small and generally does not
exceed 10–20%.

Using the Green’s function theory suggested by Felten
et al [21] the vertical surface displacement at the position of
the tip, u3(y), can be written as

u3 (y) =
∫ ∞

x3=0

∫ ∞

x2=−∞

∫ ∞

x1=−∞
c jlmndmnk

(
x′) Ek

(
x′ − y

)

× ∂

∂x ′
l

G3 j

(
y, x′) dx′ (3)

where x′ is the coordinate system related to the material,
dmnk are the piezoelectric coefficients and c jlmn are the
components of the elastic stiffness tensor. Ek(x′ − y) is
the electric field strength distribution produced by the probe.
The Green’s function for a semi-infinite medium G3 j (y, x′)
links the eigenstrains c jlmn dmnk Ek to the displacement field.
Equation (3) is significantly simplified if c jlmndmnk(y −
x′′, z) = c jlmndmnk(y − x′′), i.e. the system is uniform in the
z-direction as in the case of a system with 180◦ domain walls
normal to the surface. In this case, equation (4) can be rewritten
as

u3 (y) = −
∫

S
c jlmndmnk

(
y − x′′) (∫ ∞

z=0
Ek

(−x′′, z
)

× ∂

∂x ′
l

G3 j

(
x ′′, z

)
dz

)
dS, (4)
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Figure 1. Rayleigh’s definition of resolution. Solid, dash and dotted
lines correspond to the different separation between scatterers.

that is, a convolution of a function describing the spatial
distribution of material properties (left term) and a function
related to probe parameters (right term). This representation
for the PFM contrast is valid if the piezoelectric and dielectric
properties do not change in the z-direction on the length scale
of the field penetration depth.

The form of equation (4), where the material (sample)
parameters and the instrument (probe) parameters are
separated into different terms in a simple convolution, is not
unique to PFM and also applies to magnetic force microscopy
[23, 24] and Kelvin probe force microscopy [25, 26]. For such
cases, the contrast formation mechanism can be analysed using
transfer function theory that allows the definitions of resolution
and information limit to be established, as discussed in detail
below.

3. The resolution and information limit

The definition of spatial resolution originally evolved in the
context of optical and electron microscopy. These techniques
are ultimately based on optical or electron diffraction
phenomena where the probed area is larger than or comparable
to the wavelength, thus differing fundamentally from the near-
field principle employed in most SPMs where the probed area
is much smaller than the wavelength. Here, we briefly discuss
resolution theory in classical optical and electron microscopy
and analyse how these concepts can be applied to PFM.

The most traditional definition of resolution comes from
light optics—the well-known Rayleigh criterion [27]. In this,
resolution is defined as the minimum distance by which two
point scatterers must be separated to be discernible for a given
wavelength and aperture of the imaging system. A commonly
used alternative reading of the criterion postulates that for

Figure 2. Typical contrast transfer function in (a) phase contrast transmission electron microscopy and (b) scanning transmission electron
microscopy. The characteristic oscillations in (a) are due to coherence.

two Gaussian-shaped image features of similar intensity to
be resolved, the dip between the two maxima should be
at least 21% of the maximum. This criterion is illustrated
in figure 1 and shows the transition of the two features
from completely resolved to unresolved as a function of the
separation distance. Note that the criterion is not absolute. It
is possible that, for a system with a sufficiently high signal-
to-noise ratio, peaks separated by less than the Rayleigh
resolution can be discernible (for example, the dashed line
on figure 1), or that a system with a low signal-to-noise
ratio will require larger separations. Another important
limitation is connected to the fact that this criterion was derived
for the incoherent (phase independent) imaging conditions
and thus is not extendable to all microscopic techniques,
notably to phase contrast transmission electron microscopy
(TEM) [28, 29]. Thus for TEM, an alternative approach was
developed based on contrast transfer functions (CTFs), which
are determined by microscope parameters such as defocus and
lens aberrations [30].

The CTF is a reciprocal space function that describes
the sign and fractional transfer of spatial frequencies from
the object to the image. Solids at high magnification (TEM
samples) have a discrete spectrum of spatial frequencies q,
corresponding to interatomic spacings d, where q = 1/d. The
CTF is defined for an idealized ‘weak phase object’, which is
realized in practice by thin amorphous samples or very thin
crystalline samples. In this case, the TEM image intensity can
be written in terms of the spatial frequency [29]:

IL (q) = δ(q) + O(q) × F(q) = δ(q) + O(q) × sin χ(q)

× E�(q) × Eα(q), (5)

where O(q) is the object or sample function, and F(q) is the
CTF, which consists of the aberration-dependent sin χ(q) [30]
and two damping envelope functions: E�(q), accounting for
the spread of the focus, and Eα(q), accounting for the beam
convergence [31]. The envelope functions attenuate transfer at
high spatial frequencies.

The shape of the TEM CTF can be very complicated
(figure 2(a))—it is non-monotonic and exhibits multiple
maxima and contrast reversals. Additionally, the shape can
be changed by varying the defocus. Imaging conditions
are usually adjusted in order to extend the range of spatial
frequencies where the CTF is fairly large and varies slowly,
thus facilitating direct image interpretation [30, 29]. Under
these conditions (Sherzer defocus) the spatial frequency
where the CTF first crosses zero is referred to as the point
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Figure 3. (a) Anticipated CTF in near-field SPM and (b) evolution of ideal image with decreasing resolution. The dotted lines correspond to
the Rayleigh two-point resolution limit and the information limit (IL).

(or Scherzer) resolution. The spatial frequency beyond which
there is no information transfer is the information limit. Note
that as the lens aberrations are corrected, the point resolution of
the phase contrast imaging is extended towards the information
limit [32].

The situation is greatly simplified for Z-contrast scanning
transmission electron microscopy (STEM). In Z-contrast
STEM, the signal on a high angle annular dark field detector is
integrated over a large angular range, resulting in an incoherent
image [33, 34]. Thus Z-contrast STEM image intensity can be
presented as a simple convolution:

I (x) =
∫

O(x − y)F(y)dy =
∫

O(x − y)P2(y)dy (6)

i.e. the resolution function F(x) is in fact the probe intensity,
P2(x). In reciprocal space, equation (6) becomes

I (q) = O(q)T (q), (7)

where T (q) is the STEM transfer function, which is the
Fourier transform of the probe intensity. Unlike the phase
contrast CTF (see figure 2(a)), the STEM transfer function
T (q) is always positive in the absence of aberrations,
although it still depends on the defocus. The Sherzer
resolution [30] and information limit can also be defined for
this imaging mode (figure 2(b)). In STEM an observation
of visibly separated atomic columns corresponding to a
known crystallographic spacing (a Rayleigh-like criterion) is
considered an unequivocal proof of the resolution of that
numerical value [35]. The Fourier transform of the image
intensity is referred to as a diffractogram. The highest
spatial frequency present in the diffractogram represents an
information limit in a manner similar to the phase contrast
definition.

Image formation described by equations such as (5)
and (7), where the image intensity is given by a convolution
of the object (sample) function and a resolution function, is
often referred to as linear imaging. To generalize, the measured
image I (x), where x is a set of spatial coordinates, is given
by the convolution of an ideal image (representing material
properties) I0(x − y) with the resolution function, F(y):

I (x) =
∫

I0(x − y)F(y) dy + N(x) (8)

where N(x) is the noise function. The Fourier transform of
equation (8) is

I (q) = I0(q)F(q) + N(q) (9)

where I (q) = ∫
I (x)eiqx dx, I0(q), and N(q) are the Fourier

transforms of the measured image, ideal image, and noise,
respectively. The object transfer function (OTF), F(q), is
defined as a Fourier transform of the resolution function,
F(y). The object transfer function, F(q), and the resolution
function, F(y), can then be determined directly provided that
the ideal image, I0(q), is known. Then, once the resolution
function is determined for a known calibration standard, it can
be used to extract the ideal image, I0(x), from a measured
image, I (x), for an arbitrary sample. In both phase contrast
TEM and STEM, the ideal image can be calculated using
known atomic positions and scattering cross-sections, thus
significantly simplifying image interpretation.

Note that the form of equation (4), where the material
(sample) parameters and the instrument (probe) parameters
are separated into different terms of a simple convolution,
corresponds to the linear theory described by equations (8)
and (9). Notably, the ideal image in PFM is the distribution
of strain piezoelectric constants ei jk = c jlmndmnk that correlate
with the domain structure of the material. The resolution
function F(y) in the form given by equation (5) depends on
the electrostatic field generated by the tip. As such, it depends
on tip geometry and contact conditions etc, and its calculation
from the geometric parameters of the tip is subject to multiple
uncertainties. Due to the linear form of equation (4), however,
it can also be determined experimentally from a well-defined
calibration standard. Moreover, the general behaviour of
the resolution function in PFM can be analysed from simple
physical arguments.

The image formation mechanism in PFM is ultimately
based on the near-field interactions between the tip and the
ferroelectric material, where the contact area is significantly
smaller than the acoustic wavelength at the imaging frequency.
Hence, the resolution function can be expected to be a
monotonically decreasing function of distance and is not
expected to have zeroes. For long distances, corresponding
to point charge/force type models, power-law behaviour
consistent with the typical behaviour of Green’s functions
in electroelastic problems is anticipated. Similar reasoning
applies to the object transfer function. In Fourier space, an
exponential decay for large wavevectors can be predicted from
the finiteness of the field in the excited volume. The resulting
generic form of the transfer function in PFM is shown in
figure 3(a).

For the PFM OTF shown in figure 3(a), two definitions
of resolution, analogous with those for HRTEM and
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Z-STEM cases, can be formulated. The first definition
can be derived from the Rayleigh criterion as the minimum
separation between two point objects that can still be resolved
by PFM [36]. This Rayleigh two-point resolution (RTR)
establishes a conservative definition of resolution because
even at this spacing a substantial change in contrast is still
measurable between the two objects. However, unlike the
HRTEM or Z-STEM situations, where CTF or OTF falls to
zero at some spatial frequency, there are no natural zeroes
in the PFM OTF. Therefore we use an alternative definition,
the information limit, to define the minimum feature size that
can still be detected in the presence of noise, as illustrated in
figure 3(b).

For a material that is inhomogeneous in the z-direction,
equation (3) has a significantly more complex structure than
equation (4)—in particular, G3 j (y, x′) cannot be represented
as G3 j (y − x′). Thus, in the general case of a non-uniform
field distribution, the PFM image cannot be represented as a
2D convolution and, in the absence of information on domain
wall orientations, etc, the change of materials properties in the
z-direction cannot be addressed. Moreover, for topographically
inhomogeneous surfaces the imaging mechanism becomes
non-linear. This is similar to the situation for topographic AFM
imaging [37]. In such cases, however, it may still be possible to
analyse the spatial frequencies revealed in the image through a
diffractogram provided that the features are real, as suggested
by Engel [38] and Gutierrez [39].

4. Experimental details

PFM studies were carried out on a commercial SPM system
(Veeco MultiMode NS-IIIA) equipped with additional function
generators and lock-in amplifiers (DS 345 and SRS 830,
Stanford Research Instruments, and model 7280, Signal
Recovery). A custom-built sample holder was used to allow
direct tip biasing and to minimize capacitive cross-talk with
the SPM electronics. Measurements were performed using Au-
coated Si tips (Micromasch, spring constant k ∼ 1 N m−1)
typically at 500 kHz. The typical scan rate was 1 Hz,
corresponding to a ∼4 ms residence time for a single pixel.
The time constant of the lock-in amplifier was systematically
varied from 0.5 to 20 ms to establish its effect on the image.

Measurements were performed on pulsed-laser deposition
grown 13 nm thick lead-titanate-zirconate (PZT) thin films on
a SrRuO3 electrode using metal-coated cantilevers (Cr–Au,
Micromasch, l ≈ 130 µm, resonant frequency ∼150 kHz,
spring constant k ∼ 4.5 N m−1). Standard calibration
patterns were written using custom designed LabView/MatLab
software. To determine the relationship between domain wall
widths in phase and mixed signal images, a periodically poled
LiNbO3 (PPLN) sample was used.

5. Results and discussion

5.1. Determination of the information limit

To determine the OTF and information limit in PFM, we
adopt an approach developed for STEM based on the
analysis of the diffractograms of periodic structures. Periodic
domain structures can either be created by writing or

occur naturally, as in lamellar a–c domains of tetragonal
ferroelectrics. Figure 4(a) shows the template pattern used to
write domains on the PZT surface along with the corresponding
diffractogram. Note that ‘domain walls’ in the writing pattern
are extremely sharp. Hence, many (hk) peaks can be seen
on the FT. For this symmetric lattice, the extinction rule is
h − k = 2n + 1 (n = 0, 1, . . .). For comparison, shown in
figures 4(c) and (d) are the resultant domain patterns imaged
by PFM and their Fourier transforms. Note that only a few
low order reflections can be observed in the diffractogram.
Also, peaks that did not exist in the FT of the template pattern
are visible in the read pattern (arrow). This effect is due to
the fact that the relative areas occupied by the ‘white’ and
‘black’ domains are different on the written image as compared
to the read image due to the significant imprint of ∼1–2 V
in the film. Thus, the voltage pattern used to create the
domain structure does not rigorously represent the polarization
distribution created in the film. The intensity of the ‘forbidden’
components can thus be used as a criterion for the fidelity of
the writing procedure. The width of the peaks in the FT is a
measure of the disorder associated with domain wall roughness
and deviation in domain wall positions from ideal.

The contribution of the lock-in amplifier, which is used to
extract the weak first harmonic signal from the tip oscillation
signal, merits separate consideration. The effect of the lock-
in time constant on PFM is illustrated in figures 4(b)–(f).
Imaging with a low time constant (0.5 ms) results in a sharp,
but relatively noisy, image (as seen in both the real-space and
FT images). On increasing the time constant to 1 ms, the noise
level decreases. However, increasing the time constant further,
to 4, 10, and 20 ms, results in characteristic streaking in real-
space images along the fast scan direction. Note the evolution
of the noise background in the corresponding diffractograms
from a rotationally isotropic noise pattern for small time
constants (figures 4(b) and (c)) to a pronounced noise band in
figures 4(d)–(f), indicating a large anisotropy of noise in the
slow and fast scan directions. Also note that despite the high
smearing in figure 4(f) from the large time constant (the pattern
is not discernible in the real-space image), the corresponding
diffractogram still contains reflections corresponding to the
written pattern.

Figure 5(a) shows the wavevector dependence of the peak
intensity of several (hk) reflections for different lock-in time
constants. The peak intensities follow an exponential decay
law, I (hk) = I0 exp(−q/G), where the decay constant is
independent of the lock-in settings, G ≈ 0.005 nm−1, q =√

h2 + k2/a, and a is the periodicity of the lattice. Thus, the
intensity of the (10) peak can be used as a measure of the
overall peak to noise ratio of the diffractogram, and hence
of the image quality. To determine the optimal imaging
parameters, a plot of the intensity of the (10) peak as a function
of lock-in settings is given in figure 5(b). The peak intensity is
virtually constant for small lock-in time constants. However,
it rapidly becomes zero when the time constant becomes larger
than the time corresponding to the pixel acquisition rate (5 ms),
in agreement with the qualitative results in figure 4.

From the data in figures 4 and 5 we propose that the
actual PFM transfer function can be represented as F(q) =
Ftip(q)Fla(qx ), where Ftip(q) is the tip transfer function
described by equation (4) and is assumed to be rotationally
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Figure 4. (a) Ideal image (writing signal) (top) and corresponding FFT image (bottom) illustrating that all frequency components are present.
PFM images (top) and diffractograms (bottom) acquired with (b) 0.5 ms, (c) 1 ms, (d) 5 ms, (e) 10 ms, and (f) 20 ms lock-in time constants.

Figure 5. (a) Wavevector dependence of peak intensity for time constant (�) 1 ms, (�) 10 ms, and (�) 5 ms. (b) Intensity of the (1, 1) peak as
a function of lock-in time constant.

invariant. Fla(qx ) is the lock-in transfer function, where
qx is the wavevector corresponding to the fast scan axis.
Note that the dependence on slow scan axis would only be
important for time constants comparable to the line acquisition
time—a situation incompatible with imaging. The lock-in
transfer function depends both on the spatial coordinate and
the residence time in each pixel and, in turn, determines the
noise level in an image. In particular, for a lock-in time

constant τ � τpixel the Fla(qx ) = 1. The noise intensity
in this case is almost uniform, N(q) ≈ N(q) and, for white
noise, scales with the time constant as N(q) ∼ √

τpixel/τ .2

The noise decreases for large time constants. However, for
τ > τpixel the lock-in causes ‘smearing’ of the image in the
x-direction (streaks) and the noise spectral density acquires a

2 Noise in the slow scan axis direction can be anticipated to be higher due to
drift, etc.
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Figure 6. (a) PFM image of a grid pattern and (b) corresponding
FFT image. (c) Wavevector dependence of the FFT peak intensity
illustrating the minimal feature size. (d) Calculated transfer function
illustrating resolution.

profound anisotropy. The characteristic width of the noise band
in figures 4(b), (d), and (f) scales as qn ∼ qmaxτpixel/τ , where
qmax is the maximum frequency in the image3. The image
quality can be significantly improved, i.e. the noise level can
be decreased, by imaging at slower scan rates, that is, higher
τpixel. Slower scanning generally allows higher-quality images
to be obtained at the expense of an increased acquisition time.
However, this approach is ultimately limited by the thermal
drift of the microscope and the eventual dominance of 1/ f
noise.

To determine the resolution function, F(y), we utilize
the approach adopted in electron microscopy based on
equation (9). Shown in figure 6(a) is a 2 µm image (acquired
with a different probe from that used to figure 4) along with
the corresponding diffractogram, figure 6(b). The wavevector
dependence of the peak intensities is shown in figure 6(c),
where I (hk) = I0 exp(−q/G) with G ≈ 0.011 nm−1. The
information limit is determined by the condition I (hk) =
N(q) and, from figure 6(c), it is estimated to be 33 nm. The
ratio of the experimental to the ideal diffractogram intensities is
shown in figure 6(d), which from equation (7) defines the OTF.
The transfer function can be approximated by the Gaussian
form

F (q) = A exp
(−q2/2w2) , (10)

where A = (1.45 ± 0.08) × 10−3 and w = (12.2 ± 0.8) ×
10−3 nm−1, as shown by the solid line in the figure. The PFM
resolution function in real space can then be readily found by
inverse Fourier transform as

F (r) = 2Aw exp
(−w2r 2/2

)
. (11)

To determine the Rayleigh two-point resolution from the
resolution function, we map the transfer function theory onto

3 The image can be significantly improved if the lock-in is synchronized with
the pixel acquisition time.

the Rayleigh approach. For an ideal image formed by two δ-
function type point sources, equation (8) yields

I (x) = F
(−x ′) + F

(
x ′) . (12)

Thus, for a known OTF in Fourier space, F(q), the
resolution function in real space, F(x), can be reconstructed,
and equation (14) can be used to relate the transfer function
to the resolution as defined by the Rayleigh criterion, wR, as
F(wR)/F(0) = 0.58. For the Gaussian resolution function in
equation (11), the condition F(wR)/F(0) = 0.58 is equivalent
to wR = 1/w and for the data in figure 6 the Rayleigh
resolution is therefore wR = 82 nm.

Note that the resolution and contrast transfer function
above are defined assuming the writing pattern is the ideal
image. Hence, the RTR in this case defines the minimal
domain size that can be reliably written for the given probe,
material, and writing conditions. Moreover, these quantities,
which are related to the periodicity of the structure, represent
an average resolution for the whole image. Hence, the OTF and
RTR are sensitive to the deviations of the domain shape from
the ideal, signal variations within the domain due to surface
imperfections or contamination, etc. These definitions provide
a quantitative measure of the information transfer from the
desired template pattern to the actual image of the resulting
domain structure, and so describe the fidelity of ferroelectric
data storage rather than reading resolution per se.

However, it is often necessary to define the resolution in
existing domain structures in ferroelectric and piezoelectric
materials. In this case, the ideal image is typically not known.
Moreover, naturally forming periodic domain patterns are rare.
Hence, to define a pure reading resolution for PFM, we relate
the resolution and transfer functions to the domain wall widths
to be determined locally, as described below.

5.2. The determination of PFM resolution from real-space
images

The PFM resolution in real space can be simply determined
from the measured width of the domain wall between
antiparallel domains4. Given that the intrinsic width of a
ferroelectric domain wall is of the order of one to two unit cells
(∼1 nm) [40], the typical effective domain wall width observed
in PFM is currently of the order of 5–50 nm and therefore
reflects primarily the spatial resolution of the microscope. In
particular, due to the symmetry properties of the dielectric,
elastic, and piezoelectric constant tensors, the piezoelectric
constants change sign across a 180◦ domain wall, while the
elastic and dielectric properties do not. Hence, the relationship
between the 180◦ domain wall width and the resolution
function can be established from equation (5), where, after
normalization, the domain wall profile is given by

PR(x) =
∫ x

−∞
dx ′

∫ ∞

−∞
F

(
x ′, y

)
dy −

∫ ∞

x
dx ′

×
∫ ∞

−∞
F

(
x ′, y

)
dy + N(x). (13)

Experimentally, the width of the domain wall image
can be determined from the derivative at the centre, x0, as

4 For non-180◦ domain walls, strain can result in additional domain wall
broadening.
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Figure 7. (a) Schematics of the domain wall profile and definition of domain wall width. (b) Domain wall profile through one of the walls in
figure 6(a) and fit by equation (14). (c) Relationship between domain wall width and resolution in mixed signal and phase images.
(d) Amplitude (red/thick solid line) and phase (blue/dotted solid line) profiles across the domain wall in periodically poled LiNbO3.

wr = (PR+ + PR−)/2PR′(x0) (figure 7(a)). This definition
can also be used if the domain wall profile is fitted using a
suitable function (e.g. a phenomenological function such as the
Boltzmann sigma function, or reflecting the polarization profile
across a domain wall in the mean field theory). For example,
with a Boltzmann fit, PR(x) = PR− + (PR+ − PR−)/(1 +
exp[(x − x0)/xd]), the domain wall image width is wr = 2xd.
Note that the signal gradient at the domain wall provides an
upper limit of the ‘sharpness’ of any intrinsic feature in the
image.

The domain wall width (corresponding to edge resolution
in optical microscopy) can be naturally related to the Rayleigh
resolution defined in section 5.1. For the resolution function
given by equation (11), the domain wall profile is given (after
normalization) by

PR(x) = 1

2

(
1 + Erf

(
wx√

2

))
. (14)

From equation (14), the domain wall width is related to the
OTF parameters as wd = √

π/2/(2w) and for the experimental
data in figure 6 is found to be wd = 51.3 nm. For a Gaussian
OTF, the relationship between domain wall width and Rayleigh
resolution is wd = 0.626wR.

Shown in figure 7(b) are PFM signals across a typical
domain wall in figure 6(a). The domain wall width, determined
from the fit to equation (14), is wdr = 16 nm. This significant
discrepancy between the domain wall width estimated from the
OTF and this local measurement is due to the aforementioned
differences between the writing–reading versus reading only
processes as well as average versus local data. Understandably,
a profile taken perpendicular to a domain wall is less affected
by imperfections in the wall shape, and is not at all affected
by imperfections in the shapes of the other domain walls.
Hence, the domain wall width determined in reading process
can be used as a quantitative measure of the spatial resolution

of a given PFM image, while RTR determined from the
diffractogram is a measure of the fidelity of the writing–reading
process.

Note that in the derivation of equations (11) and (14)
relating Rayleigh resolution and domain wall width to the OTF,
we explicitly used the Gaussian approximation for the OTF.
However, this functional form is phenomenological. The large-
q behaviour of the OTF is difficult to determine due to noise
effects, and thus limits the amount of information that can be
obtained experimentally. Once an appropriate functional form
for the OTF based on a known mechanism for the tip–surface
interactions is available, analysis similar to equations (11)
and (14) can be performed. However, given that the OTF in
PFM has to be a rapidly decaying monotonic function of q
(or x), a Gaussian should serve as a reasonable approximation.
Hence the relationship between the Gaussian width, Rayleigh
resolution, and the domain wall width obtained for Gaussian
CTF can be expected to be a good approximation for other
functional forms.

5.3. Resolution in phase images

One of the difficulties in defining the resolution in PFM stems
from differences between the phase and mixed signal images
(section 2). The relationship between the two is illustrated in
figure 7(c). While the normalized PFM signal, pr , changes
between −1 and 1, the phase signal for zero noise can adopt
values of 0◦ for pr < 0 and 180◦ for pr > 0. In the
presence of an offset due to electrostatic contributions to the
PFM signal, capacitive cross-talk in cabling, etc, the phase
changes at some critical value, prc. Thus, the phase image is
similar to an image on which a thresholding operation has been
performed. In the presence of noise, the evolution of a phase
signal can be understood from the schematics in figure 7(c).
The phase achieves limiting values when the mixed signal
is either significantly larger or smaller than the characteristic
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Figure 8. (a) Domain size on mixed-signal and phase PFM images.
(b) The conversion of a mixed signal to a phase signal is similar to a
thresholding operation, where the threshold is determined by the
instrumental settings and the electrostatic contribution to the signal.
For a threshold other then 0, the domain size can be significantly
different from reality. Note that unlike a mixed signal, the signal
strength in the phase image does not depend on domain size. (c), (d)
For periodic domain size, the increase in the domain of one polarity
is compensated by the decrease in the size of domains of the opposite
polarity, providing a quantitative measure of minimal domain size.

noise amplitude and changes rapidly in the region where the
noise amplitude is sufficiently large to place the signal above or
below the threshold value. Hence, the width of the domain wall
in the phase image can be estimated as wϕ = 〈N〉/2PR′(x0),
where 〈N〉 is the average noise amplitude. Hence, the
resolution as measured from the phase image is higher than
that in the mixed signal, wϕ = wd(PR+ + PR−)/〈N〉, since
the noise level is typically small compared to the signal. From
the schematics in figure 7(c), we conclude that the effective
Rayleigh resolution for the phase signal corresponds to the
information limit of the mixed PFM signal.

Experimentally, the domain wall width determined from
phase data is ∼0.5–1 orders of magnitude lower than that

Figure 9. (a) Schematics of signal evolution with domain size for stripe or dot domains. (b) Calculated signal strength for stripe and dot
domains for a Gaussian OTF. (c) PFM image of a variable sized grid test pattern consisting of multiple strip and dot domains. (d) Profile along
the dotted line in (c), illustrating the resolution effect on signal and minimal feature size.

in the mixed signal, as illustrated by the PFM mixed-signal
and phase data in figure 7(d). Given that the domain wall
width in a mixed signal can be as small as 5–10 nm, the
width in the phase image can be as small as a fraction of a
nanometre. However, since the phase signal contains only
a fraction of the information contained in the mixed PFM
image and the thresholding operation is non-linear (hence
linear theory equations (8) and (9) do not apply), the object
transfer function and the true Rayleigh resolution and material
properties cannot be determined from the phase data until a
proper model of the tip–surface interactions is developed.

The possible effects of phase imaging on PFM data
analysis are illustrated in figure 8. For a single written domain,
variation of the thresholding level (using data processing or
due to electrostatic contributions to the PFM signal) can result
in a significant reduction of the effective domain size and
ultimately to the size corresponding to the information limit
of the technique. This is not the case for periodic domain
structures, however, where a decrease of domain size of one
polarity is compensated by an increase of domain size of the
opposite polarity, thus maintaining the overall periodicity of
the lattice.

5.4. The minimal detectable feature size in PFM

The effect of domain wall width on the detectable domain size
is illustrated in figure 9(a). For domain sizes, rd, larger than
the domain wall width, the domains are readily detectable and
the signal in the centre approaches the value for the infinite
material, i.e. imaging is quantitative. However, for rd < wr ,
the signal in the domain centre decreases rapidly with r . For
small circular domains, the contrast in the centre measured
relative to background can be readily found from equation (8)
as

PR(rd) = PRmax

∫
θ (r − rd)F (r) dr (15)

where PR(rd) is the response in the centre of the domain
centred at the origin as a function of characteristic domain size
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Figure 10. (a) Writing pattern, (b) original PFM image and (c) reconstructed PFM image using the transfer function. (d) Original and (e)
reconstructed profiles along the dotted lines in (b) and (c). Notice the difference in domain wall width.

rd and the Heaviside step function, θ(x), is 1 for x � 0 and
θ(x) = 0 for x < 0. The integration is taken over the area
rd within the domain. Note that in this case the presence of a
domain can still be detected by PFM (if above the noise level),
but the signal is no longer quantitative (i.e. the signal measured
in the centre of the domain is size-dependent and is reduced
compared to the signal in an infinite domain).

For the Gaussian OTF in equations (10) and (15), the
domain contrast as a function of domain radius for a stripe
domain of width rd is

PR(rd) = Erf

(
wrd√

2

)
. (16)

The signal in the centre of the domain decreases to 80% of
the saturation signal for rd = 1.282/w = 1.282wR (or,
equivalently, rd = 0.80wd) and to 20% of the saturation signal
for rd = 0.25wR (or rd = 0.16wd). For a square domain of
size rd, the signal in the centre is

PR(rd) =
{

Erf

(
wrd√

2

)}2

. (17)

In this case, the signal in the centre decreases to 80% of
the saturation signal for rd = 1.618wR (rd = 1.01wd) and
to 20% of the saturation signal for rd = 0.594wR (rd =
0.37wd). Thus, for domain sizes smaller than the resolution (or
domain wall width), the maximum response signal decreases
with domain size (linearly for stripe domains, quadratically
for dots). This behaviour is illustrated in figure 9(b). This
decrease is related to the finite resolution rather than to
changes in the material properties, and hence this effect
is important in the interpretation of the PFM signal from
nanoscale objects (e.g. domains written by PFM or polar
nanoregions in ferroelectric relaxors). However, note that the
domain can be detected when its size is significantly below the
resolution but still larger than the noise amplitude, i.e. at the
information limit of the measurement.

For optimal lock-in settings, the real-space definition of
minimal feature size is illustrated in figure 9(c), where the
domain pattern is created using a variable size mesh that

contains both stripe and square domains in the slow and
fast scan directions. The profile along the dotted line is
illustrated in figure 9(d). Note that the domain wall width
is ∼30 nm, providing a measure of the resolution of the
technique. For large domains, the signal saturates both on the
top and bottom of the domain, while for smaller domains, the
domain walls overlap, resulting in a characteristic triangular
shape. However, the domain can still be detected. The domain
contrast virtually disappears in the top right corner of the grid,
defining the information limit to be of the order of ∼10–30 nm.
Note that unambiguous determination of the information limit
requires the use of a diffractogram as described section 5.1.
The information limit, or minimal detectable feature size in
this case is significantly smaller than the domain wall width
(Rayleigh resolution).

5.5. Image reconstruction in PFM

Finally, the experimentally determined resolution function can
be used to reconstruct an ‘ideal image’, as demonstrated in
figure 10. The template pattern and corresponding domain
pattern are shown in figures 10(a) and (b). For deconvolution,
the recorded image diffractogram was divided by the transfer
function. To avoid the spurious amplification of the large-
q features, a noise offset of 0.1 F(0) was introduced before
the division. The resulting deconvoluted image is shown
in figure 10(c). The reconstruction is successful only in
Region I, where the domain size is above the information
limit. Note the difference in the image contrast between the
original and reconstructed images. This behaviour is further
illustrated in figures 10(d) and (e) showing line profiles across
the images in figures 10(b) and (c). Note the decrease in
domain wall width indicative of an ideal image. Also note
that the minimum domain size detected by PFM in this case is
limited by the resolution of the technique, suggesting that the
reading resolution is a limiting factor precluding experimental
observation of smaller domains that can be written by PFM.

The quality of the deconvoluted images can be signifi-
cantly improved through the use of probability-based iterative
methods such as maximum entropy reconstruction [41, 42] or
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Pixon reconstruction [43]. Both methods were shown to pro-
duce good results for Z-contrast STEM images [44, 45].

5.6. Writing in PFM

The implicit assumption used throughout this paper is that the
template voltage pattern used for domain writing (figure 4(a))
and the written ferroelectric domain pattern are equivalent. In
other words, the writing is assumed to be a binary process,
in which the application of positive bias results in a positive
domain, and a negative bias results in formation of a negative
domain. As follows from the comparison of the diffractograms
in figures 4(a)–(f), the written domain pattern actually deviates
from the template. Note that the domain writing process
is highly non-linear, and the size of the nascent domain is
determined by the tip bias, geometry, and material [46, 47]. As
shown by several authors [48–52], domain nucleation in PFM
requires a certain critical bias to be achieved, above which
the domain grows with bias. Hence, the writing voltage and
resulting domain pattern cannot be related using simple linear
theory as in equations (8) and (9).

Another interesting consequence of the domain nucleation
mechanism in PFM is that the minimum writable domain size
is not necessarily related to the information limit in PFM and
can be either larger or smaller. This follows from the fact
that while the signal generation volume in PFM is independent
of the tip bias, the written domain size, and in particular
the critical size of the nucleated domain, has a strong bias
dependence, i.e. the minimum writable domain size can be
smaller than the PFM resolution. In the case of the PZT film
used in the present work, the minimum domain size detected
by PFM is limited by the information limit of the technique,
as follows from the fact that domains gradually disappear for
short writing pulses in figures 9(c) and 10(b). This suggests
that in this case the resolution is a limiting factor precluding
experimental observation of smaller domains created by PFM.
Such domains can be detected by the change in average PFM
signal (Region II in figure 10(b)) [53]. Clearly, this conclusion
is non-universal and strongly depends on the material, e.g. in
polycrystalline films the grain by grain switching will result in
minimal writable bit sizes being larger than the resolution.

6. Summary

To summarize, the contrast transfer mechanism in PFM is
discussed and conditions for which linear imaging theory is
applicable are determined. For these conditions, definitions
for the Rayleigh two-point resolution, domain wall resolution,
and information limit are formulated. For a Gaussian OTF,
the Rayleigh two-point resolution is defined as wR = 1/q
for which F(q) = 0.58F(0). The experimentally accessible
domain wall width is related to the Rayleigh defined resolution
as wd = 0.626wR. Quantitative determination of material
properties from a PFM image requires that characteristic
domain sizes exceed wR. OTF and RTR determined from
diffractograms of periodic structures can be used to asses
the fidelity of the writing process. Complementary RTR
determined from the domain wall width determines the reading
resolution. RTR defines the conditions under which the
PFM can be used to study the intrinsic properties of the
ferroelectric domain structures, including domain wall width

and roughness. The information limit corresponds to the
minimal feature size that can be measured experimentally
and is defined by the condition F(q) = N(q). Thus, the
information limit defines the condition under which a domain
is observable, but no reliable information about the local
material properties or internal structure can be obtained. For
PFM, the information limit can be significantly smaller than
the RTR. Finally, the Rayleigh resolution in the PFM phase
images is shown to be closely related to the information limit
of their corresponding mixed signal images.

Experimental determination of the resolution function
and subsequent reconstruction of an ‘ideal image’, reflecting
the material properties and not the instrument properties, is
demonstrated. Despite the fact that the resolution function in
equation (4) is material specific, this approach can potentially
be extended to image analysis in dissimilar materials if the
dielectric properties and electric field distribution are known.
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