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Incoherent imaging of thin specimens using 
coherently scattered electrons 

BY D. E. JESSON AND S. J. PENNYCOOK 

Solid State Division, Oak Ridge National Laboratory, Oak Ridge, 
Tennessee 37831, U.S.A. 

We consider the imaging of phase objects using a scanning transmission electron 
microscope equipped with a large inner-angle annular detector. We show, contrary 
to popular expectation, that incoherent imaging theory can be used to describe the 

imaging process in a plane perpendicular to the optical axis. Interference effects 
between atoms possessing the same projected coordinates must, however, be 
considered explicitly. 

1. Introduction 

The recent development of a powerful new technique for imaging low-index crystal 
projections (Pennycook & Jesson 1990, 1991) has revived considerable interest in 

scanning transmission electron microscopy (STEM) (Crewe 1970; Crewe & Wall 1970; 
Wall et al. 1973). Atomic resolution Z-contrast images can now be routinely obtained 
on a VG Microscopes HB501 UX STEM which display characteristics very close to 
those expected for ideal incoherent imaging. Utilizing the large inner-angle annular 
dark-field (ADF) detector proposed by Howie (1979), we primarily sample 
incoherently generated thermally scattered electrons (Hall 1965). We find that the 
direct interpretability and atomic number sensitivity of our images more than 

compensates for the associated reduction in signal-to-noise ratio. Indeed, the use of 
a 75 mrad inner-detector angle provides no significant practical limitation to the 

study of semiconductors (Jesson et al. 1991, 1992) and superconductors (Pennycook 
et al. 1991) over a wide range of specimen thickness (ca. 5-40 nm). 

In the present paper, we consider the rather different conditions appropriate to the 
STEM imaging of very thin specimens which scatter relatively weakly to high angles. 
Such specimens may include heavy atoms, clusters of atoms, or extremely thin 

crystals which are directly relevant to many active areas of electron microscopy, 
including the heavy atom staining and imaging of biological materials, surface 
diffusion studies, and catalysis. For these objects, the intensity distribution in the 
STEM detector plane will be dominated by coherent scattering, and for current 
detector efficiencies, the inner angle of the Howie detector must be reduced to 
achieve an acceptable signal-to-noise ratio. The outstanding question is, therefore, 
under what conditions (if any) can incoherent imaging theory be applied to interpret 
STEM images formed primarily from coherently scattered electrons ? 

To quote the succinct abstract from the short note by Ade (1977), 'The assumption 
that images obtained in the scanning transmission electron microscope with a large 
annular detector may be interpreted in terms of the theory for incoherent imaging 
is shown to be unjustified in the case of high resolution'. The same conclusion was 
also reached by Cowley (1976), who pointed out that although the use of incoherent 
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imaging theory is justified in the case of well-resolved single atoms, its use may give 
rise to appreciable error when describing the imaging of two-dimensional clusters of 
atoms close to the resolution limit of the STEM instrument. The basic problem arises 
when atoms are separated on a scale comparable to the probe dimensions. 
Interference effects can appreciably modify the distribution of scattered electrons in 
the proximity of the central hole of the annular detector. The assumption that the 
dark-field signal is proportional to the total scattered radiation is then unjustified. 
This leads to the accepted notion that it is necessary to detect all of the scattered 
radiation to form incoherent images at atomic resolution. Reducing the detector 
inner angle will, therefore, improve the situation but will also require a smaller 
objective aperture which necessarily degrades the resolution of the imaging 
experiment (Ade 1977). 

Thus, we arrive at the hole-in-the-detector problem which has become accepted 
fact in all modern articles on STEM imaging theory (Cowley 1986, 1988; Colliex & 
Mory 1983; Xu et al. 1990). It is regarded as the single obstacle preventing the direct 
interpretation of dark-field STEM images obtained from phase objects at atomic 
resolution. In this paper, we will show how to circumvent this problem using a high- 
angle ADF detector. We shall demonstrate in ??2-4 that, with a suitably chosen ADF 

detector inner angle, it is in principle possible to suppress interference effects between 
atoms located in a plane perpendicular to the optical axis of the microscope. Thus it 
is possible to obtain atomic resolution incoherent images of phase objects using 
coherently scattered electrons. In ?5, we draw an important distinction between the 
transverse incoherent imaging of phase objects discussed in ?2 and the imaging of 
three-dimensional objects. Here, we show that z-coherence effects, which involve 
interference between atoms located at different depths in the object, cannot be 
eliminated by using an ADF detector. Thus, although the images of phase objects may 
exhibit a transverse incoherent character, the simple interpretation of columnar 
intensities as a linear sum of atomic scattering cross sections can give rise to 
appreciable error. 

2. Imaging phase objects: the hole-in-the-detector problem 
Our mathematical description of STEM will emphasize a partition of the imaging 

process into components parallel and perpendicular to the optical axis of the 
microscope z (figure 1). In this way, a clear distinction can be made between the 
separate effects of transverse and z-coherence as discussed in ? 1. We, therefore, write 
a general positional coordinate r in the form r = (R, z) where R is a two-dimensional 
(2D) real space vector perpendicular to z. Likewise, we denote positions in the 
objective aperture and detector planes by the 2D reciprocal space vector u. 

Our formulation of the hole-in-the-detector problem closely follows the approaches 
of Cowley (1976) and Ade (1977). For a field emission source, the coherence width of 
the illumination at the objective aperture is considerably greater than the aperture 
width. To a good approximation, the probe wavefunction P(R-Ro) for a scan 
coordinate Ro can be represented as a phase aberrated spherical wave; 

P(R-Ro) = F [A(u) exp (ix(u) + 2niu R)], (1) 
where Y, here and elsewhere, denotes a Fourier transform operation. The objective 
aperture function apertu 1, inside the aperture hole 

A(u) =\ 
1 0, otherwise 
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objective aperture A(u) 

(a) (b) 

specimen 

Figure 1. STEM annular dark-field imaging geometry. A small focused electron probe is scanned over 
the surface of a thin specimen. Simultaneously, transmitted electrons scattered through large 
angles are collected using an annular detector. The image is therefore built up as a function of probe 
position. To optimize the signal-to-noise ratio, it is customary to make the inner detector radius 
U. equal to the radius of the directly transmitted disc as shown in (a). In (b), we increase the radius 
of the detector hole to u and form a Howie-type detector. The conventional and Howie-type 
geometries are characterized by the detector functions D(u) and DH(u), respectively. 

and X(u) represents the phase perturbation for a defocus Af and spherical aberration 
coefficient Cs, 

x(u) = n Af Au2 + C, A3u4, (2) 
where A is the incident electron wavelength. We now assume that the specimen is 
sufficiently thin so that the transmittance of the probe can be described by a 
multiplicative transmission function. For purely elastic scattering, the scattered 
electron wave at the exit surface of the specimen may be written 

^{(R-Ro) = P(R-Ro) exp (-io(R)). (3) 
This is the phase object approximation (POA). Absorption can be included explicitly 
in (3) but is small for very thin specimens and is subsequently ignored in this 
analysis. It is assumed that the phase change of the probe wavefunction is 
proportional to the projected potential 

0(R) = f(r)dz, (4) 

where the interaction constant oC = nz/E and E is the accelerating voltage. Thus 
Fresnel diffraction is ignored, which is equivalent to assuming a flat Ewald sphere. 
The convenient idea of imaging a phase object with an inner detector angle Oi is 
therefore limited to specimens somewhat thinner than 

t = 2A/02. (5) 
In practice, this gives a maximum thickness limit of around 4 nm for 0 = 40 mrad so 
that (3) is applicable to the special class of very thin specimens mentioned in the 
introduction over a wide range of inner-detector angles. At this point, it is customary 
to expand the exponential in (3) and truncate the series to a given power in or-(R). 
For the sake of clarity, we follow this convention here and ignore all terms higher 
than second order giving; 

Vf(R - R) = P(R - R,) - ioqS(R) P(R- R,) -_o2q02(R) P(R - R,). (6) 

The neglect of higher-order terms in this expression for strongly scattering objects 
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may not be valid and will be considered later. Within the second-order 

approximation, the wave amplitude in the detector plane is given by the Fourier 
transform of (6): 

(u) = A(u) exp (ix(u) + 2riu' Ro)- ioP(u) * A (u) exp (iX(u) + 2iiu' Ro) 
- o220(u) * p(u)*A(u) exp (ix(u) + 2niu' R), (7) 

where Qi(u) is the Fourier transform of q(R). The intensity in the diffraction plane (to 
second order in oT4(u)) becomes 

I f(u) 12 = A2(u) + 2o-Re{A(u) exp (ix(u) + 2niu ' Ro) [iP*(u) * A(u) exp (- iX(u) 
- 2iu Ro) -(a P*(u) * ?*(u) * A(u) exp (- i(u) 
- 2iu' R)]} + Cr2 1(u) * A (u) exp (ix(u) + 2niu R) 12. (8) 

The first term of (8) simply represents a central disc of intensity formed by directly 
transmitted electrons. The second and third terms contained in square brackets are 
both multiplied by A(u) and so represent intensity modulations within this disc. Only 
the fourth term extends beyond the central disc and contributes to the STEM dark- 
field signal I(Ro) given by 

l(Ro)= J I(u) 12D(u)du. (9) 

Without introducing significant error, the ADF detector function D(u) is written as 

1, if Jul > 
u(10) 

D(u) = 0, otherwise.10) 

This corresponds to an infinite outer detector angle which is justified in practice by 
the rapid fall-off in signal with scattering angle 0. If the inner detector angle (of 
radius u,) exactly corresponds to the probe convergence angle, we have 

D(u) = -A(u), (11) 

which is the condition usually assumed for conventional ADF STEM imaging. 
Substituting (8) and (11) into (9) gives the image intensity as 

I(Ro) = '2 {l (u) * A(u) exp {i(u) + 2iu Ro} 12 du 

-'2 JA(u)I (u) *A(u)exp{iX(u) +2riu Rol2 du. (12) 

Equation (12) is identical to (29) of Cowley (1976) and (11) of Ade (1977). It is the 
standard expression used to consider the hole-in-the-detector problem and is 

reproduced for this purpose in many recent review articles (Cowley 1986, 1988; 
Colliex & Mory 1983). To obtain linear incoherent imaging of the function 5202(R), 
it is necessary to assume that the second integral in (12) is either zero or proportional 
to the first integral. Physically, this requires the dark-field signal to equal the total 
scattered radiation or a constant fraction of it. It is generally assumed that this can 

only be achieved by reducing the hole in the detector until the second term is 

insignificant, giving, 

I(R,) = r2 Jlo(R)P(R-RO) 12 dR = r202(Ro) * P2(R). (13) 
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This is the standard optical equation for incoherent imaging (Goodman 1968) where 
P2(R- Ro) is the surface probe intensity profile. The accepted belief is that this result 
will break down near the resolution limit of the STEM instrument (Ade 1977; Cowley 
1976, 1986, 1988; Colliex & Mory 1983; Xu et al. 1990) when oscillations of 0(u) are 
on a scale comparable with the hole in the detector. The two integrals in (12) will then 
not be proportional, and it is argued that incoherent imaging theory is inapplicable 
at atomic resolution. 

We now re-examine the hole-in-the-detector argument of ?2 from a new 
perspective. Consider replacing the standard ADF detector function D(u) (equation 
(11)) by the Howie detector function DH(u) so that 

1, for Jul > u, 
H(U) = 0O, otherwise, 

(14) 

where UH is the adjustable inner detector radius. The modified dark-field signal is 
from (12); 

I(R) = o'2 f l0(u) *A(u)exp (ix(u)+2ciu' Ro)2DH(u)du, (15) 

which for a phase insensitive detector can be written 

I(Ro) = -2 l[P(u) * A(u) exp (ix(u) + 2niu' Ro)]DH(u)12 du. (16) 

Parseval's Theorem, exploiting the conservation of energy in real and reciprocal space 
for a restricted range of spatial frequencies, then gives 

1(Ro) = -i2 l(R)P(R- Ro) * d(R)12 dR, (17) 

where d(R) is the spatial frequency filter 

d(R) = L[DH(u)] = (R)-uHJl(2,nuHR)/R. (18) 

Equations (17) and (15) represent our basic results describing the STEM dark-field 
imaging of phase objects to second order in o-r(R). To extend the analysis beyond 
this point, we must now consider the nature of the object in more detail. Single 
atoms, 2D atomic clusters, and low-index crystal projections are all examples of 
special objects associated with potentials which are sharply peaked at the atom sites. 
To a good approximation, it is possible to describe the phase object as a sum of 

projected atomic contributions so that 

0(R) = Z 5(R-R,), (19) 
i 

where fi(R)= fi(r) dz (20) 

is a potential function describing the ith atom located at Ri (note more than one 
atom can have the same projected coordinate Ri). We can now write the real space 
expression (equation (17)) for the dark-field signal as 

I(Ro) = or2 Z Oi(R-R,)P(R-Ro)*d(R) dR. (21) 
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Utilizing the a priori information that the i(R - Ri) are sharply peaked about the 
sites Ri, we are now in a position to analyse the integrand of (21) further and present 
general arguments leading to the idea of transverse incoherence. Such arguments will 
be considered more quantitatively in ?3. 

By increasing the inner radius ui of the annular detector so that 

UH > 1/AP, (22) 

it is always possible to make d(R) narrow on the scale of the probe amplitude 
function of width AP. To a good approximation, the probe will then only act as a 
scaling factor in real space for the range of spatial frequencies in qi(R - R) which are 
selected by the annular detector. This means we can justifiably remove the probe 
from the convolution in the integrand and rewrite (21) in the form, 

1(Ro) = o2J E[i(R-R,)*d(R)]P(R-Ro) dR=P2(R) * O(R), (23) 
i 

where O(R) is a characteristic specimen object function; 
2 

O(R) = o n2 | ni q, (Ri) * d(R) (24) 
Ri 

and ni is the number of atoms in the ith column. Equation (23) is an important result 
indicating that incoherent imaging theory is indeed applicable to the dark-field STEM 
imaging of phase objects at atomic resolution. However, at this point we have 
incoherent imaging of an object function which is a coherent superposition of 
spatially filtered columnar functions. This means that individual columns do not 
scatter independently so that it is difficult to intuitively interpret the image in terms 
of scattering powers although the linear incoherent imaging of O(R), as suggested by 
(23), still conveys a number of distinct advantages over equivalent coherent imaging 
methods. These include the elimination of image artefacts with defocus, since it is 
known for incoherent imaging that only one optimum contrast defocus condition 
exists. Thus images may be interpreted with an intrinsically better interpretable 
resolution limit given by the Scherzer condition for incoherent imaging (Af= 
- /(ACs) (Scherzer 1949)) which corresponds to the most compact surface probe 
intensity profile (Pennycook & Jesson 1991). 

In the special case of well-separated single atoms, the atomic contributions to the 
object function (equation (24)) do not overlap, and (23) implies incoherent imaging 
of each atom. Note, however, that it is still necessary to satisfy (22) to obtain an 
incoherent image of isolated atoms. In a conventional STEM geometry, which does 
not satisfy (22), the dark-field signal is dominated by relatively low-angle scattering 
where the probe and the atom potential vary on the same scale. Thus an image of a 
single atom will not in general map the probe intensity profile. An incoherent result 
is therefore only approached at low resolution when the scattering down the detector 
hole is negligible (equation (13)). 

For more general phase objects, we now introduce a further level of incoherence 
into the imaging process by ensuring that 

H > 1/AR, (25) 

where AR is the separation between peaks in the object function. The spatially 
filtered columnar functions become progressively narrower as UH is increased with 
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the result that, eventually, the atomic contributions to O(R) from different columns 
no longer overlap. Equation (25) therefore defines the condition required to obtain 
incoherent scattering from individual atomic columns. The object function is then 
expressible in terms of independent contributions; 

O(R) = o2 2 O(R-R)), (26) 
Ri 

where Oi(R) = Ini qi(Ri) * d(R) 12 8 (R- Ri) O(R) dR 

= 8(R-Ri) fn? c (u)DH(u)du. (27) 

Pi(u) is the Fourier transform of 0,(R) so that the object function is close to a set of 
delta functions located at the sites R, and weighted with the relevant atomic cross 
sections for scattering to the high-angle detector. Thus we now have a 2D object 
function composed of independent scatterers. O(R) represents an intuitively 
interpretable map of the specimen scattering power which assumes a greater 
sensitivity to atomic number as uH is increased. The linear incoherent imaging of this 
function offered by (23) therefore conveys the clear potential to interpret the image 
intuitively in terms of columnar scattering powers. We define this capability of the 

imaging geometry to eliminate interference effects between columns as transverse 
incoherence. 

Consider, however, the contribution of one or more atoms having the same 

projected coordinate Ri and which form a column along the z-direction. Equations 
(23)-(27) suggest that the corresponding peak in O(R) will be imaged with a strength 
proportional to the square of the number of atoms in a column, and this in turn will 
be modified further for strong phase objects. The peak is not simply an incoherent 
sum of scattering cross sections. We collectively refer to such interferences which 
cannot be eliminated by a Howie detector as resulting from z-coherence effects (see 
?5). The connection between (22) and incoherent imaging was noted previously by 
Engel (1974a, b). However, he did not consider the spacings in the object (equation 
(25)) or the effects of z-coherence on the image. 

3. Transverse incoherent imaging of atomic clusters 

In this section, we begin our quantitative study of the ideas developed in ?2 by 
considering the imaging of two atoms. We shall find that this simple problem clearly 
illustrates the important ideas applicable to more elaborate arrangements of atoms. 
For a phase object consisting of two identical atoms located at R1 and R2, the 

integrand of (21), which corresponds to the total scattering, is given by 

I(R, Ro) = 21 [q(R) * (8(R- R1) + (R - R2))]P(R - R) 12. (28) 

If the atomic potential qA(R) is considerably sharper than the probe amplitude 
profile P(R-Ro), then from Parsevals theorem the intensity distribution in the 
detector plane becomes 

I(u, Ro) = o-20Q(u) [P2(Ro- R1) +P2(R- R2) 
+ 2 Re{P(Ro-R) P*(Ro-R2) cos [AR u]}], (29) 
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AR 

< ? 

Figure 2. The equivalence of the STEM ADF scattering geometry to the interference pattern 
produced at the Howie detector by two point sources separated by a distance AR (see text). 

where AR = R1-R2 defines the atomic separation and ^A(u) is the atomic scattering 
factor. In this expression we have neglected terms in sin (AR u) which would cancel 
upon integration over the ADF detector. Essentially therefore, the intensity 
distribution defined by (29) is equivalent to the interference pattern produced by two 
point sources of strength P(R - R1) A(u) and P(R - R2) A(u) located at the atom 
positions (figure 2). 

Clearly, the intensity distribution from the two atoms scattering incoherently is 
given by 

JinC(u, R,) = a2q02(u) [P2(Ro- R1) +P2(Ro- R2)], (30) 

which is simply the probe intensity at the atom sites multiplied by the relevant 
scattering cross section. Therefore, the ratio of the detected signal to the ideal 
incoherent signal for an ADF detector of inner radius ui is given by 

R(ui, R) = 1+ 2Re [P(R- R,)P*(R- R2)] (u AR), (3) R(uR) = [p2(R- R,) )+P2 (R , R)] (3 

where 6(ui, AR) = (u) uJo(u AR) du/ u2(u) du (32) 
A1 Ui 

expresses the deviation away from ideal incoherent imaging. In an optical sense, 
6(ui, AR) can be interpreted as the real part of the complex degree of coherence y and 
likewise R(ui, R) = l/(l -ly) (Born & Wolf 1980, pp. 491-555). Clearly, perfect 
constructive interference will result in the coherent limit where 6(ui, AR) = I so that 
R(ui, Ro) = 2. This will occur for all ui and Ro when AR = 0 and the two coincident 
atoms add perfectly in phase, producing twice as much scattering as two independent 
scatterers over the entire angular range (figure 3a, b). 

The incoherent limit (ui, AR) - 0, R(ui, Ro) - 1 is approached when the atomic 
separation AR is very much greater than the atom size (figure 3c). Many phases are 
sampled automatically, even for relatively low-angle ADF detectors, and the detected 
signal is the same for two isolated atoms scattering independently. However, in 
many cases of practical significance, atomic potentials do overlap, and it is important 
to appreciate that even if all of the scattered radiation was detected, the signal would 
not be equivalent to the result expected for independent scatterers. Consider, for 
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Figure 3. Detector plane intensity distribution corrsponding to the two point sources represented 
in figure 2. The detector inner and outer angles are 10.3 and 150 mrad, respectively. The scattering 
factor dependence is intentionally removed from the distributions to emphasize interference effects 
between atoms. In (a) we show the coherent limit for coincident atoms (AR = 0), and (b) represents 
the incoherent limit corresponding to independent scatterers. The intensity distribution in (c) 
displays the fine scale interference fringes associated with well-separated atoms (AR = 3 A). In (d) 
AR = 1.5 A, and the superimposed circle shows how an increased inner detector angle of 50 mrad 
samples more interference fringes at the detector periphery. The operating voltage is 100 kV. 

*) a 

Fiur * 

Figu A sch tic representa tion of a phase objet c.nsing w atoms 

Figure 4. A schematic representation of a phase object consisting of well-separated pairs of atoms. 
Each solid circle represents a single atom. The probe cannot resolve individual atoms but can 
resolve atom pairs. 

example, a phase object consisting of well-separated pairs of atoms as shown 

schematically in figure 4. If a small hole in the detector (corresponding to low 
resolution) is used to collect almost all of the scattered intensity from this object or, 
alternatively, the condition given by (22) is fulfilled, then the image will consist of 
an array of bright spots corresponding to each unresolved atom pair. In principle, 
such an image can, of course, be interpreted using incoherent imaging theory via (13) 
Proc. R. Soc. Lond. A (1993) 
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(a) (b) 

1.2 

1 

0.8 ' ' 
0 50 100 0 50 100 

Detector Inner Angle, 0 /mrad 

Figure 5. Ratio of the ADF signal to the incoherent signal from (a) two silicon and (b) two uranium 
atoms separated by 1.0 A (solid line) and 1.5 A (dashed line) as a function of inner detector angle 
Oi. The 2.2 A (FWHM) probe is located over the centre of the two atoms at a defocus of -70 nm. The 
convergence angle is 10.3 mrad and Cs = 1.3 mm. 

or (23). However, the brightness of the spots will depend critically on the atomic 
separation for closely spaced pairs (equation (13) or (24)). Thus it is quite possible to 
confuse a pair of closely spaced atoms, for example, with three more widely separated 
atoms or indeed a single heavy atom. 

Clearly, what is needed to remove such ambiguity is to approach the incoherent 
object function result (equations (26) and (27)) by increasing the inner detector 
angle 6i. In figure 5a, we plot R(ui, Ro) (equation (31)) as a function of 6i for two silicon 
atoms separated by 1.0 and 1.5A.t For small Oi there is significant departure from 
incoherent imaging due to the atomic overlap effects noted earlier. In particular, the 
signal obtained for a 1.0 A separation is 20 % higher than the incoherent signal. By 
increasing the inner detector angle to 50 mrad, this is reduced to less than 5%. 
Similar results are obtained for uranium atom pairs as shown in figure 5b. Physically, 
this improvement is related to sampling many more interference fringes around the 
detector periphery as suggested by the circle in figure 3d. In addition, \{(u) falls 
off less rapidly with increasing u so that more fringes are also averaged across the 
detector. In real space, increasing ui improves the localization of the object function 
at the atomic sites, thus reducing interference effects between neighbouring atoms. 
A useful criterion for establishing incoherent imaging is when the first minima in d(R) 
coincide for two point scatterers separated by a distance AR. This gives the minimum 
detector angle inc for incoherent imaging as 

in = 1.22A/AR, (33) 

which corresponds to the second minima in figure 5. Note that the detector 
'resolution' criterion used to derive (33) is rather severe when compared with the 
Rayleigh condition applied to coherent imaging (0?h = 0.82A/AR) (Born & Wolf 
1980, p. 424) since to obtain an incoherent signal, the peaks must be well resolved. 
Under these conditions, the coherent signal will deviate from the incoherent signal 
by about 5%. Thus, for a given atomic spacing, it is possible to adjust the detector 
angle using (33) to obtain an incoherent image with an optimum signal-to-noise ratio. 

The extension of these ideas to the study of 2D atomic clusters involves only a 
straightforward extension of the object function approach for atomic pairs. However, 

t 1 A = 10-l m. 
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some care should be directed towards situations where more than two atoms may be 
in close proximity in which case it may be prudent to adopt a more conservative 
condition than (33) for a given AR. 

4. Transverse incoherent imaging of crystal projections 
Within the limitations of the POA, the essential differences between clusters of 

single atoms and periodic arrangements of atomic columns become rather trivial. 
Consider, for example, a simple projected potential consisting of a square projected 
unit cell of side 4 A containing two closely spaced atomic columns separated by 0.5 A 
as shown in figure 6. With a 2.2 A (FWHM) probe, typical of current ultrahigh 
resolution STEMS (Pennycook & Jesson 1990), the columnar spacing will clearly not 
be resolved although groups of two columns comprising a single dumbbell can be 

imaged individually. The situation is, therefore, directly analogous to the imaging of 
atomic pairs in ?3. 

In order to meet the criterion for a phase object, (5) limits the crystal thickness to 
around 3 nm for a maximum relevant scattering angle of 50 mrad. A further 
restriction is placed on the columnar atomic density if the analysis is limited to 
second-order terms in orr(R) as in ?2. However, we shall show in ?5 that higher-order 
terms do not affect the main conclusions regarding transverse incoherence so that 
without losing generality, we shall continue to assume a weakly scattering phase 
object. Then, for columns consisting of nsi silicon atoms of atomic scattering factor 

Psi(u) located at Ri, (15) gives the image intensity as 

I(Ro)= S2 E 4(u G) E Pi(u) exp (27tiu R) * A(u) exp (iX(u) 
G i 

+ 2iiu ' RQ DH(U) du (u - G) nsi Ps(u) [I+ exp ( Ir^iG2)] 

2 

* A(u) exp (ix(u) + 2iu . 
'Ro) DH(u) du. (34) 

Here, the set of vectors {G} defines the 2D reciprocal lattice, and Gx is the component 
of a given G parallel to the dumbbell direction (see figure 6). The integrand in (34) 
represents the scattered intensity distribution on the STEM ADF detector, which for 
a periodic object is a coherent convergent beam electron diffraction (CBED) pattern 
(Zeitler & Thomson 1970; Spence & Cowley 1978). The pattern in figure 7a 

corresponds to the disc overlap geometry in figure 7 b with the probe located at the 
centre of the unit cell. We have intentionally removed the angular dependence of the 
atomic scattering factors Qsi(u) in figure 7c to emphasize the interference effects 
between different columns in the projection. This is manifested by the horizontal 
modulations in scattered intensity which correspond directly to the square bracketed 
term in (34). 

The hole in the conventional ADF STEM detector shown in figure 7 exactly 
corresponds to the size of the directly transmitted disc and is completely located 
within a bright interference fringe. The dark-field signal is generally dominated by 
scattering closest to the hole in the detector because of the angular fall-off in the 

scattering factors Psi(u). Therefore, scattering from the unresolved columns at the 
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Figure 6. A simple 'two-string' crystal projection in which two closely spaced atomic columns are 
located in a square projected unit cell. Gx and Gy, respectively, denote components of a reciprocal 
lattice vector G which are parallel and perpendicular to the dumbbell direction. 

Figure 7. Calculated CBED patterns for the two-string potential contained in figure 6. The probe is 
located over a dumbbell in (a), and the geometry of the disc overlap regions is shown schematically 
in (b). The convergence angle is 10.3 mrad, and Cs = 1.3 mm in all simulations. The defocus is 
-70 nm unless stated otherwise. From (c) onwards, we remove the atomic scattering factor 
dependence to emphasize the interference effects between different atomic columns. The 
superimposed circle in (c) represents the inner radius of a 50 mrad Howie detector. The probe is 
located over a channel in (d), and in (e) and (f), the probe (over a dumbbell) is defocused to - 130 
and -30 nm, respectively, producing regions of destructive interference in the patterns. In (g), the 
probe is located directly over an atom with the columns of the two-string potential of figure 6 now 
separated by 2 A. In all cases, the annular detector conforms to the conventional geometry 
represented in figure 1a, which ranges from 10.3 to 150 mrad. The operating voltage is 100 kV. 
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centre of the unit cell will tend to contribute in phase to l(Ro). As pointed out by 
Cowley (1976), this can produce an appreciable difference from the signal anticipated 
from the two columns scattering incoherently. However, it is immediately apparent 
from figure 7c that by choosing a large inner detector radius, which is significantly 
greater than the structure factor modulation period, many fringes will be sampled 
around the circumference of the hole. This will negate interference effects between 
columns and the signal will start to approach the incoherent cross section for each 
string imaged separately (Jesson & Pennycook 1990). In this rather extreme case 
involving closely separated strings, the error, assuming incoherent imaging, is 
reduced from 50 % at small un to less than 10 % for a 70 mrad inner detector angle 
(figure 8). 

Thus we now have a clear reciprocal space interpretation of transverse incoherence, 
which is entirely complimentary to the real space viewpoint of ?2. In particular, it 
is instructive to relate the image characteristics predicted by the intuitive real space 
analysis to the behaviour of a coherent CBED pattern. For example, the convolution 
of (23) clearly indicates why more intensity is scattered to the Howie detector with 
the probe over a dumbbell than with the probe over a channel. Figure 7 c and d show 
the corresponding CBED patterns for these two situations. The overlapping regions of 
the CBED discs add in phase with the probe over the dumbbell, but interfere 
destructively with the probe over the channel. The real space and reciprocal space 
viewpoints are, therefore, entirely consistent. In a similar way, the defocus 
dependence of the image can be understood in real space in terms of the surface probe 
intensity profile. The most compact optimum defocus condition (Af= V/(ACs) 
(Scherzer 1949)) corresponds in reciprocal space to the condition for maximum 
constructive interference of the sBED discs (figure 7c). Defocusing the probe 
produces regions of destructive interference in the overlap regions (figure 7 e and f) 
which corresponds to the spreading of the probe in real space. The physical origin and 
justification of the real space convolution in (23), therefore, arises from the scale of 
interference effects in the CBED pattern formed at the detector plane. Interference 
fringes become more closely spaced as the columnar spacing increases (figure 7 g). For 
well-resolved columns, the radius of the directly transmitted disc and hence the 
detector hole radius must always be considerably larger than the scale of the fringes 
resulting from interference between columns. This is similar to the case of well- 
resolved single atoms shown in figure 3c. Thus, many fringes are automatically 
sampled, even for an ADF detector DH(u) with a relatively low inner angle. For well- 
resolved columns of atoms, the condition of (25) is therefore fulfilled automatically 
so that it is only necessary to satisfy (22) to obtain an incoherent image. 

Finally, we emphasize that the ideas of transverse incoherence also apply equally 
well to imaging defects. Although the resulting CBED pattern from a non-periodic 
object is necessarily more complicated, identical considerations still apply to the 
elimination of interference effects between a random array of columns (see, for 
example, the discussion of atomic clusters in ?3). Indeed, the concept of a coherence 
volume, elongated in the z-direction, is clearly evident from the elimination of 
speckle contrast in STEM ADF imaging of amorphous solids (Gibson & Howie 1978-9). 
However, the nature of transverse and z-incoherence effects in the context of imaging 
perfect crystals at atomic resolution was not specifically addressed. 
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Figure 8. Ratio of the ADF signal to the incoherent signal as a function of 0i for two silicon columns 
separated by 0.5 A. The 2.2 A (FWHM) probe is over the centre of the dumbbell at a defocus of 
-70 nm. The convergence angle is 10.3 mrad and Cs = 1.3 mm. 

5. z-coherence: higher-order terms 

In the previous sections, we have shown that a Howie detector function DH(u) 
cannot eliminate interference effects between atoms in the same column of a crystal 
projection. It was found that a peak in the characteristic object function has a 

strength proportional to the square of the number of atoms in a column. However, 
this simple picture of in-phase z-coherence can often break down in cases of practical 
importance. It is seldom possible to ignore terms higher than or-202(R) in the 
transmission function for a column of medium to heavy atoms. Then, dynamical 
effects cause the scattering from individual atoms in the column to add in a highly 
nonlinear fashion. In this section, we specifically consider the effect of these higher- 
order terms and establish the important result that transverse incoherent imaging is 
unaffected in the case of strong phase objects. 

To extend the analysis of ?2 to the case of a strong phase object, it is necessary to 
consider higher-order terms in the expansion of the transmission function t(R) where 

t(R) = exp (-ic(r(R)). (35) 

It is convenient to rewrite (35) in the form 

t(R) = 1-iU(R), (36) 

where U(R) is the dynamical pseudo-potential 

U(R) = ( /io) [(iL(R)) -(i'(R))2 +3(icr(R))3-...]. (37) 

Thus it is always possible to reduce a strong phase object to a single scattering 
'pseudo-object' described by the potential U(R). The fact that U(R) is complex 
directly implies the breakdown of Friedel's Law for a non-centric crystal projection 
in the presence of multiple scattering. It can be seen from (37) that all of the terms 
in U(R) are sharply peaked about the projected atom positions. The real space 
arguments of ?2 can therefore be applied to each successive term to give an 
expression identical to (23); 

I(R,) = P2(Ro) * Os(Ro) (38) 

but with the strong phase object function OS(R) given by 

O(R) = I [(ioS(R)) -(icrS(R))2 + I(icrS(R))3- ...] d(R)12. (39) 
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Figure 9. Higher-order multiple scattering terms of the object function (equation (42)) for a column 
of three uranium atoms plotted against scattering angle at 40 kV. 

Figure 10. Columnar object function (equation (42)) calculated for n uranium atoms at 40 kV and 
a 30 mrad inner detector angle. The dashed line shows the ideal in-phase coherent n2 dependence 
extrapolated from the n = 1 value. 

For a low-index crystal projection, we now express O(R) in terms of the projected 
atomic contributions qS(R-Ri) so that under incoherent imaging conditions 
(equations (22) and (25)), 

OS(R) = Oq(R-RE), (40) 
Ri 

where 

O (R) = I [(ini ori((R)) -1(in1i o4(R))2 + ?(ini o (R))3- . . * d(R) 12. (41) 

In the weighted delta function approximation, the equivalent of (27) is 

O, (Ri) = d(R-R,) Jin m,i lo(u)+ * i(u) 

-in i (3Pi?(u) * P(uu)* P(u) ...)- 12DH(u) du, (42) 

which is analogous to the use of complex scattering factors for single atoms (Zeitler 
& Olsen 1967). Here Oi(u) is the ith atom scattering factor calculated in the first Born 
approximation and expressible as a sum of gaussians (Doyle & Turner 1968); 

i(u) = E ayexp(-bys2). (43) 
j=1,4 

The convolutions contained in (42) can therefore be evaluated analytically so that 
the third term, for example, may be written as a sum of gaussians in reciprocal space; 

(i{(u) 
* 0i(u) * Pi (u) ,= j-, al a abb bbb 

l, j, k-l, 4 b b + b b ?+ b bjbk 

x exp - b +f b,, +b b (44) 

The higher-order scattering terms will have different widths and will each assume a 
greater importance in different regions of reciprocal space. This is illustrated in figure 
9 for a column comprising three uranium atoms at 40 kV. This situation is directly 
relevant to the impressive imaging experiments of Isaacson and coworkers (see fig. 
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13.9 of Isaacson et al. (1979)) which clearly show the resolved columns of a uranium 
microcrystal. This image was interpreted entirely using incoherent imaging theory. 
Although this is largely justified in the transverse direction because in this case 
0i w 1.22A/AR (equation (33)), the calculated columnar object function in figure 10 

suggests that the intensity will increase approximately as the number of atoms in the 
column squared. Thus, it would seem inappropriate to consider the columnar 

intensity as resulting from an incoherent sum of contributions from the atoms 
contained within the column. In particular, a single atom will appear a factor of 4 
fainter than two atoms with the same projected coordinate so it would be quite 
possible to misinterpret such weak features in the image. We believe this might be 
the case for the uranium microcrystal image mentioned above where the weakest 
spots in the image probably represent single atoms or monolayer rafts. Ignoring this 

intensity level would then explain the apparent linear imaging observed by Isaacson 
et al. (1979) since n2 increases roughly linearly between n = 2 and 4. The apparent 
reduction in the calculated signal of figure 10 compared with the n2 dependence of 
'ideal' in phase coherent scattering can be directly attributed to multiple scattering. 
Increasing the number of atoms in the column implicates higher-order terms in the 
expansion (equation (41)) and broadens the overall scattering distribution. Indeed, 
the form of equations (42) and (44) suggest that it might be possible to tabulate a 
parametric fit to the strong phase object function in a manner analogous to atomic 
scattering factor work (Doyle & Turner 1968; Moliere 1947; Pennycook et al. 1986; 
Zeitler & Olsen 1964). However, since the Howie detector averages over several 
multiple scattering terms, the deviations away from the n2 behaviour are remarkably 
small suggesting that images can be interpreted intuitively without the need for 
complicated image simulation. This is a significant advantage of this imaging mode 
and has important implications for the study of very thin specimens in many areas 
of materials science. 

6. Beyond the phase object approximation 
In this section, we explore how the imaging process is affected when Fresnel 

diffraction becomes important and the convenient assumption of a perfect phase 
object breaks down. We use a simple but illuminating analytical approach which has 
some validity for large-angle scattering and is similar to the concept of a thick phase 
grating introduced by Cowley & Moodie (1962). 

As discussed in ?2, a thickness limit exists for scattering to an angle 0 beyond 
which the POA becomes inappropriate and the atoms within the column can no longer 
be regarded as scattering perfectly in phase. In kinematic theory, for a semi-infinite 
slab of finite thickness t, it is customary to describe columnar defocusing effects by 
the well-known shape transform 

t 
s(u) exp (- 2isu z)dz, (45) 

where su is the deviation parameter between the scattering vector u and the Ewald 
sphere construction for an incident electron wavevector k of transverse component 
K; 

s,u (1/2k)(2K u-u). (46) 
We now make the large-angle scattering assumption u > K giving 

u - 2/2k. (47) 
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Physically, this means that at large enough scattering angles, z-defocusing is 
dominated by the curvature of the Ewald sphere. Incorporating this phase change 
directly into (15) then gives a modified large-angle single scattering result; 

i(Ro) = -2 f [ai(u) * A(u) exp (ix(u) + 2niu Ro)] SH(u) 2DH(u) du, (48) 

where SH(u) is the high-angle shape transform 

SH(u) = exp (inu2z/k) dz (49) 

and 0(u) now represents the reciprocal space structure amplitude per unit slice (i.e. 
the Fourier transform of the projected potential of one slice of the crystal). We 
emphasize that incorporating the shape transform in this way is only valid for a large 
inner-angle Howie detector. Following the real space arguments of ?2 then gives 

I(R,) = P2(Ro) * OZ(Ro, t), (50) 

where OZ(R, t) is now a thickness dependent object function 

OZ(R, t) = c2 E O2(R - R) (51) 
Rj 

and OJ(R) = Jf,(R) * SH(R, t) * d(R) 12 (52) 

is the z-defocused object function for the jth column 'slice' potential 0q(R)= 
nj qj(R)/t. Here, 

SH(R,t) = exp -2-- )dz (53) 

is the Fresnel propagator function integrated along the column. Thus, transverse 
incoherent imaging is still obtained in a large-angle single scattering approximation. 
However, the object function is now a function of thickness depending on the 

defocusing effects of atoms located at different heights in the column. A special case 
of (53) involves two isolated atoms with the same projected coordinate Ri but 

separated by a distance Az. The curvature of the Ewald sphere over the angular 
range of the ADF detector means that coherence will be destroyed if Az > k/(u2 _ U) 
where ue defines the effective outer detector angle which in practice is governed by 
the fall off in atomic scattering factors. For typical conditions of ui = 1.08 A-l (0i = 
40 mrad), ue = 1.62 A-1 (Oe = 60 mrad) and 100 kV electrons, we have Az > 20 A 
which agrees with similar conclusions by Gibson & Howie (1978-79) and Fertig & 
Rose (1977). Clearly, the Howie detector is considerably less efficient at destroying 
coherence in the z-direction compared with the transverse plane. For an atomic 
column, the typical interatomic spacings are small and interference effects along the 
column must be included explicitly using (53). Consider, for example, the projected 
potential of figure 6 assuming the columns to consist of Si atoms spaced at 4 A. 
The Fresnel interference effects between atoms in the column manifest themselves as 
radial fringes in the full kinematic simulation contained in figure 11 which supports 
the large-angle scattering assumption, equation (47). The vertical bands of intensity 
correspond to the transverse coherence effects discussed in ?2, but the radial fringes 
resulting from z-coherence scale the intensity in a highly nonlinear fashion. More 

specifically, the signal oscillates about a mean value with increasing thickness due to 
the bright inner fringe building up intensity and then falling off the detector. This is 
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Figure 11. CBED pattern simulation for the projected potential of figure 6 with the probe located 
over a dumbbell. The kinematic calculation includes z-defocusing effects explicitly for a 10 nm 
thick crystal and a 50 mrad inner detector angle. Other imaging conditions are identical to figure 
7a. 

(a) -A\ (b) 

o 

z 

0 40 80 120 160 200 
Thickness / A 

Figure 12. (a) Image intensity as a function of specimen thickness for Si[110] at 100 kV. The 2.2 A 
(FWHM) probe is located over a dumbbell (see figure 13c) and the detector angular range is 
50-150 mrad. The probe convergence angle is 10.3 mrad, and C- = 1.3 mm. Interference effects 
between atoms at different heights in the crystal are included explicitly. (b) Real space scattering 
geometry for a column of atoms. 

further illustrated by the calculation for Si[110] as displayed in figure 12a. We 
assume a 50-150 mrad annular detector with a 2.2 A (FwHM) probe located over the 
centre of a dumbbell (see figure 13). The relevant detected portion of the zero-layer 
CBED pattern is displayed in figure 13a. The initial part of the curve in figure 12a 
increases for small t as the number of atoms squared, but z-coherence effects rapidly 
suppress the high-angle signal at around 1 nm. A simple real space interpretation of 
this thickness dependence is illustrated in figure 12b. Assuming that the ADF signal 
is dominated by scattering which is close to the inner periphery of the detector at 
angle Oi, destructive interference will occur for a column length of Az = 2A/0. This 
is equal to about 3 nm for Oi = 50 mrad, which is in excellent agreement with the first 
minimum present in the full kinematic calculation of figure 12a. This explains why 
high-angle thermal diffuse scattering, which is effectively generated incoherently by 
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(c) @0 
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Figure 13. (a) Detected portion of a CBED pattern relevant to the calculation of figure 12. The probe 
is located over a dumbbell (a) and channel (b) of the Si[1 10] projection shown schematically in (c). 
The crystal thickness is 20 nm. 

each slice of the crystal (Rez et al. 1977; Young & Rez 1975) quickly dominates in 
thicker crystals. In this case, z-incoherence is naturally built into the imaging process 
(Pennycook & Jesson 1990, 1991) even though this is impossible to achieve using 
coherently scattered electrons and a Howie detector. 

Finally, for a thick phase grating we note that transverse incoherent imaging of 
the object function 

OT(R,t) = C2 E OT(R-Rj) (54) 
Rj 

is also obtained where 

oT(R) = IUJ(R) * SH(R t) *d(R)12 (55) 

is the object function for the jth column slice pseudo-potential 

2- J R) ...R) (56) U.(R)= (1/iu)[(ioVS~(R)) -'(ioqz f(R))2 ? (i z(R))3 ...]. (56) 

This result takes into account both multiple scattering and Fresnel diffraction effects 
and is valid to crystal thicknesses where the two effects can be treated separately. 
The implications of this analysis should therefore be at least qualitatively 
representative of multislice simulations of high-angle ADF STEM images formed from 

coherently scattered electrons. Recently, several authors have performed such 
calculations and have been surprised by the apparent close agreement with 
incoherent imaging theory (Xu et al. 1990; Wang & Cowley 1989, 1990; Shin et al. 

1989). Clearly, this is just a manifestation of the transverse incoherence effects 

suggested by (50)-(56). Note that our discussion of coherent scattering from 3D 
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objects has not specifically addressed the question of diffraction to higher-order Laue 
zones (HOLZS) of the reciprocal lattice. However, we believe that such reflections will 
be dominated by zero-layer scattering at small crystal thicknesses and will be rapidly 
dominated by incoherently generated thermally scattered electrons in thicker 
specimens (Pennycook & Jesson 1991). 

7. Discussion 

In this paper, we have shown how an incoherent image of a phase object can be 
formed by using coherently scattered electrons. A STEM equipped with a large inner 
angle Howie detector suppresses interference effects in the transverse plane of the 
phase object. This transverse incoherence lends itself to a real space interpretation 
which has important implications for intuitive imaging. By tuning the inner detector 
angle for a given imaging experiment, it should, therefore, be possible to obtain 
intuitive images of atomic clusters and monolayer rafts with an optimum signal-to- 
noise ratio. 

The inability of the Howie detector to destroy z-coherence in a phase object has 
been discussed in ?5. Atoms possessing the same projected coordinate Ri will add in 
phase so that the signal will vary as the number of atoms squared. Images should 
therefore be interpreted accordingly. For strongly scattering columns, dynamical 
diffraction will further influence the n2 dependence. It is, however, intriguing that 
this departure is quite small for the strong phase uranium column of figure 10. It 
would appear that the Howie detector averages several of the multiple scattering 
terms in (42) (see also figure 9) which reduces the sensitivity of the signal to a change 
in shape of the scattering distribution. This is most likely a general effect applicable 
to most situations of practical interest within the phase object regime. 

8. Conclusions 

Using a large inner angle ADF detector, we have shown how to overcome the 'hole- 
in-the-detector problem' which is the major obstacle preventing a simple 
interpretation of atomic resolution STEM images of thin specimens. It is only 
necessary to detect a representative fraction of the total scattered intensity to form 
an incoherent image of a phase object using coherently scattered electrons. This can 
be achieved if the inner radius of the annular detector is increased so that the 
detector function d(R) is narrow compared with the dimensions of the probe 
(equation (22)). This mode conveys the advantages of incoherent imaging although 
scattering to the detector is governed by a coherent object function if projected 
atomic contributions overlap. In turn, this coherence can also be removed by further 
increasing the inner angle so that d(R) is narrow compared with the atom separation 
(equation (25)). Incoherent imaging of a phase object where the atomic columns 
contribute independently is then achieved. The high-angle coherent signal is rapidly 
suppressed in three-dimensional (3D) objects by columnar defocusing and is replaced 
by incoherently generated thermal diffuse scattering. This effectively builds 3D 
incoherence into the imaging process. 

We thank J. M. Cowley, J. M. Gibson, and J. Silcox for stimulating our interest in STEM ADF 

imaging of very thin specimens and S. L. Carney, T. C. Estes, and J. T. Luck for technical 
assistance. This work was sponsored by the Division of Materials Science, U.S. Department of 
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