
Z-CONTRAST SCANNING TRANSMISSION ELECTRON
MICROSCOPY

S. J. PENNYCOOK1 AND P. D. NELLIST2

1Solid State Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee, 37831-6030, USA.
2Nanoscale Physics Research Laboratory, School of Physics and
Astronomy, The University of Birmingham, Birmingham, B15 2TT, UK.

1.  Introduction

Historically, the development of the transmission electron microscope has followed the
path of continually increasing the degree of coherence of the imaging process.  This is
despite the fact that coherent high resolution images suffer from the phase problem
which means they cannot be directly inverted to give the object.  Interpretation must
necessarily rely on simulation of images of trial objects.  Even with the prospect of
spherical aberration correction, coherent images will still take many forms depending on
objective lens defocus and specimen thickness, and the inversion problem will remain.  

In the last decade, electron probes of atomic dimensions have become available in
commercial electron microscopes, and make possible the efficient realization of
incoherent imaging.  Incoherent images have no phase problem, and therefore can be
directly inverted to the object without the need for image simulations.  Furthermore, the
directly interpretable Scherzer resolution limit is significantly higher for incoherent
imaging than for coherent imaging, in fact, the information limit is double that of
bright field coherent imaging, and in addition the sensitivity to instabilities in defocus
and energy is greatly reduced.  The incoherent image uses high angle scattering which
leads to strong atomic number (Z) contrast, and also makes simultaneous electron
energy loss spectroscopy (EELS) possible from single atomic columns selected from
the image.  In the quest for higher resolution to understand the atomic origins of
materials properties, incoherent imaging would appear to hold substantial advantages.

In this review we first describe incoherent imaging in light optics, and then the
special considerations for incoherent imaging with electrons, which are not absorbed in
the sample like photons, but only scattered.  It is seen that an annular detector in
STEM with a high inner angle provides an almost perfect approximation to incoherent
imaging.  The image is given by a straightforward convolution of the probe intensity
profile with the scattering power of the object.  High angle scattering occurs close to
the atomic sites, so that the image resolution is dominated by the probe intensity
profile.  These characteristics are retained even in the presence of strong dynamical



diffraction.  Such multiple scattering effects do not alter the total intensity falling on
the detector, with the result that the image does not show the strong thickness
oscillations characteristic of coherent images, and is still given by a simple
convolution.  The brightness of atomic columns seen in the image is still directly
related to their mean square atomic number and the image can still be directly inverted.
It is this behavior that makes Z-contrast imaging so powerful for structure
determination of interfaces and defects such as dislocation cores.  

2.  Incoherent Imaging with Photons

A perfect incoherent image results from a self-luminous object.  As shown in Fig. 1a,
each part of the object emits independently, so there are no permanent phase
relationships between rays emerging from neighboring parts of the object.  After
passing through the imaging system, Abbé theory tells us that each point is blurred
into an Airy disc, but discs from neighboring points are uncorrelated in phase and no

Figure 1.  (a) Perfect incoherent imaging of a self-luminous object; (b) perfect coherent imaging of the
same object illuminated by a plane wave.

interference is observable on a long time scale.  We simply square each Airy disc
amplitude A(R) into its intensity A2(R), and the image is given by the convolution of
the object intensity function O2(R) with A2(R)

I(R) = O R( )2 ∗ A R( )2 . (1)

Now if there are permanent phase relationships between nearby parts of the object
the situation is completely different.  Fig. 1b shows a plane wave illuminating the
same object.  Now, we cannot square up the Airy discs from each point because the two



Airy discs have a permanent phase relationship which we must know to determine the
intensity.  The phase problem has appeared; the image is now given by

I(R) = O R( ) ∗ A R( )( )2 . (2)

 Because of the interference we can no longer interpret the image directly in terms of
object properties.  This was realized over one hundred years ago by Lord Rayleigh
(1896).  He further realized that by illuminating the object with a large range of angles
the phase factors are averaged and an approximation to incoherent imaging can be
achieved.  In his words “the function of the condenser in microscopic practice is to
cause the object to behave, at any rate in some degree, as if it were self-luminous, and
thus to obviate the sharply-marked interference bands which arise when permanent and
definite phase relationships are permitted to exist between the radiations which issue
from various points of the object".  

He also realized that incoherent imaging gives significantly better resolution than
coherent imaging.  For the situation in Fig. 1, clearly the incoherent resolution
function A2(R) must be sharper than A(R) for the coherent mode.  Fig. 2 shows Lord
Rayleigh’s classic result comparing the observation of two point objects illuminated
coherently and incoherently.  The two point objects are separated so that the first zero in
the Airy disc of one coincides with the central maximum of the other, a condition that
has become known as the Rayleigh resolution criterion.  With incoherent illumination
there are clearly two peaks in the intensity distribution and a distinct dip between them;
the two objects are just resolved, and the peaks in the image intensity correspond
closely with the positions of the two objects.  With coherent illumination by a plane
wave source the two objects are unresolved.  

Figure 2. Image intensity for two point objects P1 and P2 illuminated incoherently, coherently in phase, and
coherently 180˚ out of phase, after Lord Rayleigh  (1896).
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However, if the two objects are illuminated coherently but 180˚ out of phase, the
intensity drops to zero half way between them; they are always resolved whatever their
spacing.  Unfortunately it is impossible to achieve out of phase illumination for more
than one specific image spacing.  For example, illuminating from one particular angle
will give out of phase illumination for one spatial frequency, but other spatial
frequencies will have different phase relationships and show different contrast.  Also the
two peaks in the image intensity are significantly displaced from their true positions.  

Incoherent imaging gives the optimum combination of high resolution with a
faithful representation of the object.  It allows direct image interpretation, as we do in
our everyday lives with our eyes.  Our task is to achieve the same ideal of incoherent
imaging with electrons.

 
3.  Incoherent Imaging with Electrons

3.1. CTEM OR STEM?

Figure 3.  Ray diagrams for coherent bright field imaging in (a) the CTEM and (b) the STEM.

As seen in the ray diagrams of Fig. 3, the essential difference between the conventional
TEM and the STEM is the position of the objective lens relative to the specimen.  In
the CTEM it is used to gather diffracted beams which are brought to a focus on the
microscope screen where they interfere to produce the image contrast.  The electrons
travel from top to bottom in the figure.  Not shown are additional projector lenses to
provide higher magnification.  In Fig. 3b, the optical path of the STEM is shown, with
the electrons travelling from bottom to top.  A point source is focussed into a small
probe by the objective lens, which is placed before the specimen.  Not shown are the
condenser lenses (equivalent to the CTEM projector lenses) between the source and the
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objective lens to provide additional demagnification of the source, and the scan coils to
move the probe sequentially from point to point across the specimen and form the
image.  Transmitted electrons are detected through an angular range defined by the
collector aperture.  For the small axial collector aperture shown, the two microscopes
have identical optics, apart from the fact that the direction of electron propagation is
reversed.  Since image contrast in the electron microscope is dominated by elastic
scattering, no energy loss is involved and time reversal symmetry applies.  With
equivalent apertures, the image contrast is independent of the direction of electron
propagation and the two microscopes are optically equivalent: the STEM bright field
image will be the same image, and described by the same imaging theory, as that of a
conventional TEM with axial illumination.  This is the principle of reciprocity, the
original basis for understanding the formation of high resolution lattice images in the
STEM (Cowley, 1969, Zeitler and Thomson, 1970).

Now suppose our objects consist of crystals oriented along low index directions, i.e.
discrete columns of atoms.  Applying the concepts of Lord Rayleigh, whether we have
coherent or incoherent imaging depends on whether the Airy discs of neighboring
atomic columns have permanent and definite phase relationships between them, which
depends on the transverse coherence length at the object.  With an axial illumination (or
collection) aperture much smaller than a typical Bragg angle, the transverse coherence
length will be much longer than interatomic spacings, as shown in Fig. 4a.  This is a
coherent imaging condition.  If however the illumination (or collection) aperture is

Figure 4.  Schematic showing how the transverse coherence length Lt of the condenser aperture (CTEM)
or collector aperture (STEM) determines if neighboring atoms are imaged coherently (a) or incoherently
(b).
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opened up much wider than a typical Bragg angle, then the transverse coherence length
at the specimen is much smaller than the atomic separation.  No permanent definite
phase relationship exists between the electrons illuminating (or detected from) the two
columns.  This is incoherent imaging.

It would seem that all we need to do is to open up the illumination (or collection)
aperture in the CTEM (or STEM) to achieve incoherent imaging, in a way exactly
analogous to Lord Rayleigh’s condenser lens.  A useful criterion for the minimum
aperture semiangle θ to achieve incoherent imaging of two objects separated by d is

θ = 1.22 λ/d, (3)

where the image intensity varies by less than 5% from the incoherent expectation
(Jesson and Pennycook, 1993).  In this case the Airy disc coherence envelope of the
illumination (collection) aperture is half the width of that of the objective aperture.
This condition therefore corresponds to separating the coherence envelopes by double
the Rayleigh resolution criterion.  

Although optically equivalent, there is a large difference between the CTEM and
STEM as regards image efficiency.  The objective apertures in both microscopes are
similar in size.  For coherent imaging the illumination (collection) aperture must be
much smaller than the objective aperture, but conversely much larger for incoherent
imaging.  It creates much less damage in the specimen to illuminate with the small
aperture and collect with the large aperture.  Illuminating with the large aperture means
many more electrons pass through the sample than are collected for imaging, and beam
damage is much greater.  The CTEM is therefore the natural choice for coherent
imaging, whereas the STEM is the instrument of choice for incoherent imaging.

For the incoherent image, better contrast results from the complementary annular
dark field detector, because the unscattered beam is then removed from the image.  This
is particularly important for thin weakly scattering objects.  The concept of the annular
detector was introduced by Crewe, Wall and Langmore, 1970, and spectacular images of
single heavy atoms were obtained (see for example Isaacson, Ohtsuki and Utlaut, 1979).
In the field of materials, despite annular detector images showing improved resolution
(Cowley, 1986) and theoretical predictions of the lack of contrast reversals (Engel,
Wiggins, and Woodruff, 1974), it was generally believed impossible to achieve an
incoherent image at atomic resolution.  A crucial element in realizing incoherent
imaging was the development of the high angle annular detector, suggested first as a
means of improving the contrast of small catalyst clusters on amorphous or diffracting
supports (Treacy, Howie and Wilson, 1978, Howie, 1979 and Treacy, Howie and
Pennycook, 1980).  The mechanism here was the reduction of coherent diffraction due
to the Debye-Waller factor and increased Z-contrast at higher scattering angles.  

Only much later was it realized how the detector imposes a narrow coherence
envelope which results in almost perfect incoherent imaging.  Incoherent images of
thick crystalline materials were first reported by Pennycook and Boatner (1988), and the
explanation for the incoherent characteristics despite the strong dynamical diffraction
followed (Pennycook and Jesson, 1990).  The narrow coherence envelope preferentially
selects highly localized s-type Bloch states, and reduces the contribution of less



localised states.  Inter-column interference is eliminated even in thicker crystals.  A
detailed discussion of transverse incoherence was given by Jesson and Pennycook (1993)
and in Jesson and Pennycook (1995) it was shown how phonon scattering also destroys
coherence through the thickness of the sample.  Recently a complete mathematical
derivation  of the dynamical object function has been given by Nellist and Pennycook
(1998a).

Finally we note that because the detector aperture can be made much greater than the
objective aperture size, the imaging can be made to approach the ideal of perfect
incoherent imaging as closely as desired.  In contrast, Lord Rayleigh’s best condenser
lens was equal to the objective lens, and improved incoherence could only be achieved
by reducing the objective aperture and degrading the image resolution.

1.2. COMPARISON OF COHERENT AND INCOHERENT IMAGES

The difference between coherent and incoherent characteristics is apparent in the contrast
transfer functions of Fig. 5, shown for the VG Microscopes HB603U operating at
300kV with an objective lens Cs of 1mm and optimum conditions for each mode as
defined originally by Scherzer (1949).  All images presented here were taken with this
microscope.  For the coherent imaging mode, the contrast oscillates rapidly at high
spatial frequencies, and is zero at zero spatial frequency.  Because of the reversals, atoms
in distorted regions such as grain boundaries may reverse contrast or be absent from a
phase contrast image.  The incoherent mode has a smoothly decaying positive transfer
function which avoids contrast reversals and extends to higher resolution.  Transfer is
unity at zero spatial frequency, so that image intensities are proportional to thickness
(in the absence of multiple scattering).

a         b

Figure 5. Contrast transfer functions for a 300 kV microscope with an objective lens of 1mm Cs; (a)
coherent imaging conditions; (b) incoherent imaging conditions.  Curves assume the Scherzer (1949)
optimum conditions shown in table 1, (a) defocus -505 Å, (b) defocus -438 Å, aperture cutoff  0.935 Å- 1.

Both the axial bright field phase contrast image and the Z-contrast image can be
recorded simultaneously on a STEM, and carry very different information.  As an
example, Fig. 6 compares images of an Al-Ni-Co decagonal quasicrystal.  This
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decagonal phase is quasiperiodic in two dimensions but periodic along the third axis,
which makes it ideal for electron microscopy.  Viewing along the periodic direction, the
ten-fold clusters arranged in their quasiperiodic tiling are easily observed in the bright
field image.  However, the Z-contrast image clearly shows improved resolution.  Now
the central regions of the ten-fold rings are seen to have two different structures, either a
disordered ring of almost uniform intensity or much more localised bright columns.
This is evidence of chemical ordering.  From higher magnification images of the
clusters the Al columns could be located and the structure determined (Yan, Pennycook
and Tsai, 1998).

Figure 6.  (a) Bright field and (b) Z-contrast images of an Al-Ni-Co decagonal quasicrystal taken
simultaneously on the STEM showing the increased resolution in the incoherent mode.

The electrical resistivity of amorphous alloys of Si1-xVx reveal a metal-insulator
transition near x ~ 0.18 with corresponding changes in electronic structure and atomic
structure seen by X-ray and neutron diffraction.  Bright field and Z-contrast images of
two samples above and below the transition point are shown in Fig. 7 (Tanaka et al.,
1997).  The bright field images show the speckle pattern of the amorphous phase with
little structural information, but the Z-contrast images show very distinct differences.
For x = 0.12, small bright clusters ~1-2 nm in size are seen, whereas for x = 0.30, a
continuous bright region is observed.  This striking difference in connectivity was not
apparent from the X-ray or neutron diffraction data, but is clearly the origin of the
transition from the insulating to the metallic state.



Figure 7.  Bright field (left) and dark field Z-contrast images (right) of amorphous Si-V alloys.  The bright
field images show little contrast but the Z-contrast images show a change in structure from isolated V-rich
clusters to a continuous distribution on increasing the V concentration from 12% (upper) to 30% (lower).

Figure 8 shows a bundle of iodine-intercalated carbon nanotubes (Grigorian et al.,
1998).  Because of their cylindrical form, only a few atomic layers are parallel to the
electron beam.  Nevertheless, lattice fringes from the tubes are seen clearly in the phase
contrast image because it is tuned to the spacing expected, and filters out the uniform
background near zero spatial frequency due to all other atoms.  The Z-contrast image on
the other hand is sensitive to the absolute numbers of atoms under the beam.  Where
there is no significant dynamical diffraction, it can be considered as an image of
projected mass thickness.  There is no detectable contrast from the tubes themselves,
but the iodine intercalation is clearly visible.  Thus the two kinds of images are highly
complementary in this case.



a

a b

Figure 8.  Bright field (a) and Z-contrast (b) images of iodine intercalated carbon nanotubes

Figure 9.  (a) Bright field and (b) Z-contrast images of a Rh catalyst particle on γ-alumina.

Fig. 9 shows a Rh catalyst cluster supported on γ-alumina (Pennycook et al.,
1996).  In this case, the bright field image is dominated by phase contrast from the
carbon film (Z = 6) used to support the sample, whereas the Rh particle (Z = 45) is
clearly visible in the Z-contrast image.  Bright field imaging of small metal clusters
becomes very difficult for particles less than about 1 nm in size, due to the inevitable
coherent interference effects from the support and the lack of Z-contrast (Datye and
Smith, 1992).

The ultimate example of Z-contrast imaging is the detection of single Pt atoms on
γ-alumina shown in Fig. 10 (Nellist and Pennycook, 1996).  Here again the two
images are very complementary.  The orientation of the γ-alumina support can be
deduced from the bright field image, while single atoms, dimers and trimers are



detectable in the Z-contrast image.  Spacings and angles between the Pt atoms are
constrained to match the atomic spacings in the γ-alumina surface, suggesting the
possible adsorption sites shown in the schematic.  The ability to work with insulating,
rough substrates of this kind represents an important advantage of STEM compared to
atomic force microscopy or scanning tunneling microscopy.

Figure 10.  Z-contrast image of a Pt catalyst supported on γ-alumina.  The spacings and angles between Pt
atoms match the orientation of the support, suggesting the possible configurations shown in the schematic.
A Pt trimer and two dimers are circled.

1.3. PROBE FORMATION IN STEM

Consider a plane wave filling the objective aperture in the STEM.  The probe profile is
just the intensity distribution in the object plane, the square of the Airy disc amplitude
distribution.  Due to spherical aberration and defocus, the phase of each point in the
wavefront suffers an aberration eiγ as it propagates to the object plane.  The probe is
therefore best described as a coherent, converging, phase-aberrated spherical wave.

We will denote transverse coordinates by upper case letters, and the beam direction
as z, so that positions in the objective back focal plane are labeled by the two-
dimensional vector K , and positions in real space by (R,z).  Assuming the objective
aperture is centered on the optic axis of the lens, |K| = χθ is the transverse component
of the incident electron wavevector χ = 2π/λ, where λ is the electron wavelength.  We
will write the objective lens transfer function as

A(K) = H(K) eiγ(K) (4)

Pt
O
Al



where the amplitude H(K) is unity inside the aperture and zero elsewhere.  The transfer
function phase factor γ is given by

γ = π
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where Cs is the objective lens spherical aberration coefficient and ∆f is the defocus.  The
amplitude distribution P(R) of the STEM probe is obtained by integrating the transfer
function over the objective aperture, 

P(R) = ∫ A (K) ei(K·R) dK. (6)

Since a shift in real space by R  is equivalent to multiplication in reciprocal space by
ei(K·R), if the probe is translated to a position RO the probe amplitude distribution is
given by

P(R - R0) = ∫ A(K) ei K·(R – R0) dK. (7)

The probe intensity distribution is given by P2(R).  A focal series is shown in Fig.
11 for a 300 kV STEM with Cs = 1mm and an objective aperture of 9.4 mrad.  Notice
how the intensity profiles are not symmetric with defocus.  At low values of defocus
the probe is close to Gaussian in nature, while at high defocus values the probe
develops a sharper central peak but also a substantial “tail”, a subsidiary maximum

Figure 11.  Probe intensity profiles for a 300 kV STEM with Cs = 1mm and a Scherzer optimum objective
aperture of 9.4 mrad, with corresponding simulated images of Si(110).
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around the central peak.  Although the width of the central peak is significantly reduced,
actually dropping to below 1!Å at a defocus of -500!Å, now over half the total
intensity is in the tail.  This gives rise to significant false detail in the image which
makes intuitive interpretation no longer straightforward, as shown by the corresponding
simulated images of Si〈110〉 shown in Fig. 11.

For intuitive image interpretation, the optimum probe is that which gives the
narrowest central peak but without significant tails.  The situation was analysed by
Scherzer in his classic 1949 paper.  Although this paper is well known for the so-called
Scherzer optimum conditions for bright field phase contrast imaging, it also gives
optimum conditions for a wide illumination aperture.  They are somewhat different
from the coherent conditions, as seen in Table 1, primarily through the use of a slightly
smaller aperture to eliminate probe tails.  The resulting image resolution is
significantly higher than for the coherent case, as expected.  The question of the
optimum probe has also been discussed in detail by Crewe and Salzman, 1982.

TABLE 1.  Comparison of Scherzer optimum conditions for
coherent and incoherent imaging

Resolution limit       

Optimum aperture

Coherent Imaging

0.66 Cs
1/4 λ 3/4

1.51 (λ/Cs)1/4

Incoherent Imaging

0.43 Cs
1/4 λ 3/4

1.41 (λ/Cs)1/4

Optimum defocus -1.15 (Csλ )1/2 -(Csλ )1/2

This ideal electron-optical limit is achieved when the objective aperture is
illuminated by a plane wave, which requires the size of the geometric image of the
source to be zero.  This in turn requires infinite demagnification of the source by the
condenser and objective lenses resulting in zero current.  To compromise we typically
work with a source contribution of a few tenths of an angstrom, much smaller than the
probe profile.  This incoherent broadening of the probe results in less image contrast
than would be calculated for the theoretical probe.  The size of the broadening can be
estimated by convoluting the theoretical probe by a narrow Gaussian, then convoluting
with the object function and comparing to the experimental image intensity.

1.4. INCOHERENT IMAGING OF THIN WEAKLY SCATTERING OBJECTS

1.4.1. Detection of all Scattered Electrons

For a thin weakly scattering specimen, we can assume the probe to be a wave packet
with amplitude P(R) throughout the thickness of the specimen, and calculate the
amplitude ψs scattered into the direction Kf from the first Born approximation,
(Pennycook et al., 1997)



ψs(Kf) = c ∫ e-iKf⋅R V(R) P(R - R0) dR, (8)

where V(R) is the projected potential and c =
  

m
2πh2

.  Integrating the scattered intensity

|ψs|2 over all final states Kf, and using the identity,

∫   e-iKf ⋅ (R - R′) dKf = (2π)2 δ(R - R′) (9)

gives the total scattered intensity as

I(R0) = ∫  O(R) P2(R - R0) dR, (10)

= O(R) * P2(R0), (11)

a convolution of the probe intensity profile P2(R) with an object function O(R) given
by

O(R) = σ 2 V2(R), (12)

where  σ = 2πc = χ  /2E is the interaction constant.  Therefore, provided all scattered
electrons could be collected, we would have incoherent imaging of the square of the
projected potential with a resolution controlled by the incident probe intensity profile.
The problem lies in the fact that many of the scattered electrons lie within the cone of
the incident beam and cannot be distinguished from the unscattered electrons.  Detecting
the total transmitted intensity would give no contrast, as electrons are not absorbed just
scattered.  This led to the so-called “hole-in-the-detector” problem; by cutting a hole in
the annular detector large enough for the incident beam to pass through, not all the
scattered electrons could be collected.  The problem is minimized by using a small
objective aperture, but then only low resolution would be obtained.  So it was
commonly believed that incoherent imaging was impossible at atomic resolution
(Cowley, 1976, Ade, 1977).  The resolution of the problem is to use a hole in the
detector that is large compared to the objective aperture, as discussed in section 3.1
above.  The theory for this is presented next.  

1.4.2. Detection of High Angle Scattered Electrons

We include the detector through the function D(Kf), which is unity over the detector and
zero elsewhere, so that the total detected intensity is now

I(R0) = c2 ∫∫∫ e-iKf⋅(R-R′)V(R)V*(R′)P(R-R0)P*(R′-R0)D(Kf)dRdR′dKf, (13)

which can be integrated over  Kf to give the image in terms of a real space detector
function D(R″), where R″= R-R′,



I(R0) = σ 2 ∫∫ V(R″+R′)V*(R′)P(R″+R′-R0)P*(R′-R0)D(R″)dR′dR″. (14)

Now it can be seen that if the detector function in real space is narrow on the scale of
the probe, as it is for a high angle annular detector, then P(R″+R′-R0) will be
practically constant during the R″ integration and the integral can be separated to give

I(R0) = σ 2 ∫ V(R″+R′)D(R″)dR″ ∫ V*(R′)P(R′-R0)P*(R′-R0)dR′. (15)

Performing the R″ integration convolutes the detector function with the potential in
real space.  As this is equivalent to multiplication in reciprocal space, it is clear that the
detector selects only the high order Fourier components of the potential, i.e. it acts as a
high pass filter.  The image is now given by

I(R0) = σ 2 ∫ [V2(R′)∗D(R′)]P2(R′-R0)dR′, (16)

which is again in the form of a convolution, so we regain incoherent imaging with

I(R0) = O(R) * P2(R0), (17)

but the object function is now high pass filtered,

O(R) = σ 2 [V2(R)∗D(R)]. (18)

As before, if we have a bright field detector, D(Kf) = δ(0), then D(R″) = 1, and we
cannot separate Eqn. 14.  The bright field image is given by

IBF(R0) = σ 2 V(R) * P(R0)2, (19)

and we now have a phase problem.

1.4.3. Image Contrast

The origin of the image contrast can be seen by inserting Eqn. 7 for the probe into Eqn.
13 for the intensity on the detector,

I(R0) = c2 ∫∫∫ e-iKf⋅(R-R′)V(R)V*(R′)∫ A(K) ei K·(R–R0) dK

× ∫ A*(K′)e-i K′·(R′–R0)dK′ D(Kf)dRdR′dKf. (20)

Now the variables K and K′ refer to the incident cone of illumination.  Collecting
terms in R and R′ we have  



I(R0)   = c2 ∫∫ e-i(Kf-K)⋅RV(R) dR∫ ei(Kf-K′)⋅R′V*(R′)dR′

× ∫ A(K)e-iK·R0dK∫ A*(K′)eiK′·R0dK′D(Kf)dKf. (21)

Now the R  and R′ integrations select the Kf-K and Kf-K′ Fourier components of the
potential, and the image is given by

I(R0) = σ 2 ∫ V(Kf-K)V*(K′-Kf)∫ A(K)e-iK·R0dK∫ A*(K′)eiK′·R0dK′D(Kf)dKf. (22)

This expression is simplified considerably by taking the Fourier transform with respect
to R0 (Nellist and Pennycook, 1998b).  Defining a spatial frequency ρ  = K′-K, we
obtain 

I(ρ) = σ 2 ∫∫ V(Kf-K)V*(ρ -Kf+K)A(K)A*(K+ρ)dKD(Kf)dKf. (23)

We can see that the intensity of the image spatial frequency ρ depends on a product of
the probe-forming aperture functions with incident direction separated by ρ.  Clearly the
contrast falls to zero if ρ exceeds the objective aperture diameter.  Contrast comes only
from regions of overlapping discs on the detector, as shown in Fig. 12a (Spence and
Cowley, 1978).  This is also the origin of the factor of two improvement in resolution
for incoherent imaging compared to axial bright field imaging.  In the bright field case
no disc overlaps are detected if ρ exceeds the objective aperture radius, as shown in Fig
12a.  The bright field STEM resolution limit is therefore the same as for bright field
imaging in CTEM, as expected by reciprocity.

Figure 12. Diffraction pattern in the detector plane from a simple cubic crystal of spacing such that the
angle between diffracted beams is greater than the objective aperture radius.  (a) An axial bright field
detector shows no contrast, while in (b), regions of overlapping discs on the annular detector produce
atomic resolution in the incoherent image.

b Annular Detector



Now if the detector is large compared to the range of incident wavevectors K, we
can ignore the K dependence of the potential coefficients in Eqn. 16 and separate it into

I(ρ)   = σ 2 ∫ V(Kf)V*(ρ -Kf)D(Kf)dKf ∫A(K)A*(K+ρ)dK. (24)

Now we have again separated the image into a contribution dependent only on the
specimen, and one dependent on the probe, and achieved incoherent imaging.  It is
described in reciprocal space as,

I(ρ) = O(ρ) t(ρ) (25)

where

O(ρ) = σ 2 ∫ V(Kf)V*(ρ -Kf)D(Kf)dKf (26)

is the Fourier transform of the object function O(R) in Eqn. 18, and

t(ρ) = ∫ A(K)A*(K+ρ)dK (27)

is the Fourier transform of the probe intensity profile P2(R), which acts as the transfer
function for incoherent imaging.  Transfer functions for the optimum Scherzer
conditions are shown in Fig. 13, corresponding to the profiles shown in Fig. 11. Also
shown is the ideal transfer function without any aberration.  The approximately
triangular shape reflects the decreasing disc overlap with increasing spatial frequency.
Increasing the defocus is seen to enhance the high spatial frequencies but reduces the
transfer at lower frequencies.  In all cases the transfer reaches zero at the cutoff defined
by the aperture.  If the aperture size is increased, the transfer function can be extended;
Fig. 13b shows transfer functions obtained with a 13 mrad objective aperture,
corresponding to an aperture cutoff of 0.74!Å.  At high defocus values, significantly
improved transfer is obtained at spatial frequencies near and beyond the cutoff of the
smaller aperture.  The curves are shown on the same vertical axis.  Note that the
absolute transfer at zero spatial frequency scales as the square of the aperture diameter,
i.e. is proportional to beam intensity.  At lower defocus values transfer is very similar
to that with the optimum aperture and an intuitive image is expected.  Contrast will be
reduced however compared to the optimum aperture because of the much larger uniform
background.

Experimental verification of enhanced transfer under such conditions is seen in Fig.
14, which shows images of Si 〈110〉 obtained with a 17 mrad objective aperture (Nellist
and Pennycook, 1998c).  Under optimum defocus the dumbbells are well resolved (Fig.
14a) with maxima close to the atomic positions, the expected intuitive image.  The
Fourier transform of the image intensity, Fig. 14b shows the spatial frequencies being
transferred, which includes the {004} reflection at a spacing of 1.36!Å.  On increasing
the objective lens defocus, Fig. 14c, the image is no longer intuitive but many
additional spots are seen in the Fourier transform (Fig. 14d).  The {444} spot at 0.78!Å



is the highest resolution so far achieved in an electron microscope.  This result
demonstrates very clearly the improved resolution available with incoherent imaging, as
first pointed out by Lord Rayleigh.

a b

Figure 13.  (a) Transfer functions for a 300 kV STEM with Cs = 1mm and a Scherzer optimum objective
aperture of 9.4 mrad; (b) extended transfer obtained with an oversized 13 mrad objective aperture.

Figure 14. Images and corresponding Fourier transforms of Si 〈110〉 obtained with a 17 mrad objective
aperture; (a,b) at Scherzer defocus passing the {004} spacing and resolving the dumbbell; (c,d) using a
high underfocus giving increased transfer at high spatial frequencies, including the {444} spacing at
0.78!Å.
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1.5. INCOHERENT IMAGING OF THICK WEAKLY SCATTERING OBJECTS –
z-COHERENCE

Because of the short wavelength of high energy electrons, a short transverse coherence
length requires an inner detector angle of only a few degrees.  The phase differences
between atoms separated along the beam direction will be much shorter than between
atoms separated laterally, as shown in Fig 15.  Atoms spaced by x and z in the
transverse and longitudinal directions respectively, when viewed from direction θ have
phase differences of xsinθ and z(1-cosθ) respectively.  For small scattering angles these
are approximately xθ and zθ2/2, suggesting that as atoms are formed into columns,
although columns separated laterally will be imaged incoherently, all atoms in an
individual column will scatter coherently.  Useful insights into the physics of this
situation can be seen if we ignore temporarily the complications of dynamical scattering
and treat an entire column as a weakly scattering object.  We will see that it is thermal
vibrations that break coherence in the z-direction, by inducing transverse displacements
comparable to the detector coherence envelope.

1.5.1. Kinematical scattering from a column of atoms

We now need to include the z dimension in
calculating the amplitude scattered to each
final state Kf.  Ignoring probe dispersion,
Eqn. 8 is replaced by

ψs(R0,Kf) = c ∫ e-ikf⋅rV(r)P(R-R0)dr. (28)

Separating the transverse and longitudinal
directions,

ψs(R0,Kf) = c ∫ e-iKf⋅RV(R)P(R-R0)dR

 ×  ∫ e-ikzz  dz,            ( 2 9 )

where kz is the difference in z components
of the incident and scattered wave vectors
due to the curvature of the Ewald sphere,
and V(R) is the projected potential per unit
thickness.  The integration over z gives
the usual kinematic shape factor for a
crystal of thickness t,

     ∫ e-ikzz  dz = sin(kzt / 2)
kzt / 2

,         (30)

where
kz  = χ (1 – cosθ) ≈ Kf

2/2χ. (31)

Figure 15. Path differences between
scattering from atoms separated in the
transverse and longitudinal directions.
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Because of this shape factor the detector will now be covered with a system of thickness
fringes, becoming denser with increasing scattering angle and with thicker crystals.  The
detected intensity is now oscillatory with thickness, as expected with coherent scattering
(Jesson and Pennycook, 1993).

1.5.2. The Role of Thermal Vibrations

We now look at the role of phonons in breaking the coherent integration over thickness
in Eqn. 21.  We consider each atom to have an instantaneous displacement due to
thermal motion of u = (U, uz) and take the time average to find the scattered intensity.
The general expression for the intensity detected from a vibrating crystal is

I(R0)   = c2 ∫∫∫ e-iKf⋅(R-R′)V(R)V*(R′)P(R-R0)P*(R′-R0)dRdR′ 

× ∫∫〈e-ik⋅(u-u′)〉e-ikz(z-z′) dzdz′dKf. (32)

Here the angled brackets denote the time-averaged phase factors due to the thermal
displacements.  To evaluate the effect of these thermal displacements in breaking the
coherence in the z integration we need an explicit model for a vibrating crystal.  The
convenient Einstein model assumes independently vibrating atoms, and will
automatically break the z-coherence.  To see physically how the coherence is broken it
is necessary to go to a phonon model, in which neighboring atoms are vibrating in
phase (Jesson and Pennycook, 1995).  Such a model has been developed by Warren
(1990), using a Debye dispersion relation and assuming equipartition.  It reduces the

Figure 16. Degree of coherence between an atom at the origin and neighboring atoms along a column
using a phonon model of thermal vibrations.  



time average to a convenient analytical form, given by

 W = 〈e-ik⋅(u-u′)〉 = exp 2M
Si(q B u − u' )

qB u − u'
− 1

 

 
 

 

 
 

 
 
 

 
 
 

. (33)

Here Si(x) is the sine integral function, M = Bs2  is the usual Debye Waller factor with
s = (sinθB/λ), where θB = θ/2 is the Bragg angle, and qB is the Brillouin zone boundary
in the z-direction.  Figure 16 shows plots of this function for different values of s
showing how the coherence rapidly reduces as the separation of atoms along the column
increases.  For large separations the degree of coherence approaches the limiting value
of e-2M, which is the Einstein value for the strength of coherent reflections in his model
of independently vibrating atoms.  The phonon model shows clearly that atoms close
together scatter with greater coherence than those far apart, leading to the concept of a
longitudinal coherence volume.

Therefore, the need for large detector angles to ensure intercolumn incoherence
(transverse incoherence) will automatically break the intracolumn coherence leading to
longitudinal incoherence also, which is extremely convenient.  To see which phonon
modes are involved we can expand the time average as

〈e-ik⋅(u-u′)〉  =  〈e-i[Kf⋅ (U-U′) + kz(uz-uz′)]〉. (34)

For a high angle detector, the transverse momentum Kf is much greater than kz, and so
amplifies the effect of the transverse displacements U.  Since it is the z integration we
are trying to break, it is phonon wavevectors in the z direction that are needed (to

Figure 17. Thickness dependence of the scattering from a column of Rh atoms spaced 2.7!Å apart along
the beam direction for low, medium and high scattering angles.  The coherent thickness oscillations at low
angles are largely suppressed at high angles.
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compensate for the curvature of the Ewald sphere).  So transverse modes of phonons
travelling in the z direction are required to break the z-coherence.  

The change in the thickness dependence of the image intensity with increasing
annular detector angle is largely governed by the changing longitudinal coherence
length.  The thickness behavior changes from oscillatory at low angles reflecting the
long coherence length to more linear at large angles where the coherence length is much
shorter than the specimen thickness.  This is illustrated in Fig. 17 for a column of Rh
atoms 2.7 Å apart illuminated by 300 kV electrons.  With low detection angles the
scattering is almost entirely coherent.  With increasing detector angle the scattered
intensity exhibits an initial coherent dependence with thickness, changing to an
incoherent dependence as the column becomes significantly longer than the coherence
length.  At higher angles the initial coherent oscillation occurs more quickly, and the
thickness dependence is mostly linear.  Also, a significant fraction of the thermal
displacements of the atoms are due to zero point fluctuations which will not disappear
on cooling the sample.  Thus it should not be assumed that the scattering will become
coherent on cooling, but the required detection angles will be increased somewhat.

Although this kinematic scattering model is inappropriate for thick crystals with
strong dynamical diffraction, the physical insights remain valid; it is the phonons that
break the coherence in the z direction and remove the strong oscillatory thickness
behavior.  This gives us an image that is effectively integrated through the specimen
thickness rather than an image based on the exit face wave function.  

1.6. INCOHERENT IMAGING OF THICK CRYSTALS: DYNAMICAL
EFFECTS

1.6.1. Bloch States

Bloch states are the quantum mechanical stationary states of a fast electron in a crystal,
and therefore the natural basis for examining the effects of dynamical diffraction.  If it
were possible to excite a single Bloch state at the entrance surface of a crystal, it would
propagate to the exit surface unchanged, except for a depletion in amplitude due to
processes such as phonon excitation and inelastic scattering.  Such processes are usually
modeled by a phenomenological absorption coefficient.  However, Bloch states are not
the stationary states of the fast electron in the vacuum, plane waves are, and so it is
necessary to couple the two sets of states at the crystal entrance surface.  For example, a
single incident plane wave can be expanded into a complete set of two-dimensional
Bloch states bj (K,R) as

ψ(R,z) = 
j

∑ εj (K)bj (K,R)eiK⋅Re-ikz
j(K)z e-µj(K)z (35)

with excitation coefficients εj(K) and absorption coefficient µj(K) propagating along the
z axis with wavevector kz

j(K).  The first six states for Si(110) are shown in
Fig. 18, and take on the form of molecular orbitals about the atomic strings.  Usually,
the wave function inside the crystal can be well-represented with just a few strongly



excited Bloch states, and it is their propagation with different wavevectors kz
j that leads

to the depth dependent dynamical diffraction effects.  The 1s states are located over the
deepest part of the projected potential and consequently have the highest kinetic energy
and the largest kz

j.  As they overlap little with neighboring columns, their kz
j(K) is

independent of K.  Such states are said to be non-dispersive.  These states that are the
most localized in real space are the broadest in reciprocal space.  States that are less
localized in real space will overlap and perhaps hybridize with states on neighboring
columns.  It is these states that are responsible for the non-local effects in phase
contrast imaging.  In reciprocal space such states are narrow.  Now it begins to be clear
how a small axial detector will detect the interference between all highly excited Bloch
states whereas the high angle detector will be sensitive only to the 1s states.

Figure 18.  Intensities of the first six Bloch states in Si(110) with their molecular orbital assignments.  The
1s states are located around the Si atomic columns.

1.6.2. The Dynamical Object Function

Dynamical diffraction can be included in the expressions for detected intensity given in
the previous sections simply by replacing the aperture function H(K) by H(K)ψ(R,z).
For example, Eqn. 6 for the probe becomes

P(R-R0,z) = ∫ A(K)
j

∑ εj(K)bj(K,R)eiK⋅(R-R0)e-ikz
j(K)ze-µj(K)zdK. (36)

And the probe intensity inside the crystal is now given by P2(R-R0,z).  This is now
the total wave function inside the crystal (incident wave plus scattered waves).  As
shown by Nellist and Pennycook (1998a) it can be integrated over the detector and
Fourier transformed with respect to Ro to give an expression analagous to Eqn. 16 for
the image spatial frequency ρ



I(ρ,z) = ∫ D(Kf)dKf ∫ A(K)A*(K+ρ)
j,k

∑ εj(K)εk*(K+ρ)bKf
j(K)bKf

k*(K)

× e-i[kz
j(K)-kz

k(K)]zdK, (37)

where bKf
j(K) represents the Kf Fourier component of the Bloch state j, and we have

ignored absorption for the time being.  The enormous advantage of this fully reciprocal
space representation is that the integral over the detector can be performed immediately
to see which Bloch states give important contributions to the image intensity.  This
results in vast savings in computer time compared to multi-slice approaches where all
the beams reaching the detector are calculated even if they eventually sum to zero.  The
detector sum is given by

Cjk(K) = ∫ D(Kf) bKf
j(K)bKf

k*(K) dKf (38)

and acts on the Bloch states as a high pass filter in the same way as it selected the high
frequency components of the atomic potential in section 3.4.2.  

1.6.3. The High Thickness Limit

The efficiency of the Bloch wave filtering is seen very clearly in the limit of high
thickness where the cross terms Cjk become insignificant compared to the independent
terms Cjj because of the exponential factor in Eqn. 37.  Figure 19 shows the
contribution to the object function of the two 1s states in GaAs compared to the object
function calculated with all 265 states. These other states add just a small, almost
uniform background intensity to the object function.  A similar conclusion had been
reached by Pennycook and Jesson (1990, 1991, 1992) assuming the image to be given
by the intensity at the atom sites.  Although the intensity at the sites is dominated by
the 1s states, this approach is equivalent to setting D(Kf) = 1 above.  Using the full
detector function results in even more perfect 1s state filtering.

The image intensity, Eqn. 37, is now given by

I(ρ,z) = ∫ A(K)A*(K+ρ)
j,k

∑ Cjk(K)εj(K)εk*(K+ρ)e-i[kz
j(K)-kz

k(K)]zdK, (39)

which, since the dominant contribution at high thickness is the 1s states, we can
approximate as

I(ρ) = ∫ A(K)A*(K+ρ)
1s

∑ Cjjε
j(K)εj*(K+ρ)dK. (40)

Here we have removed the K dependence of the Cjj term, as the s states are non-
dispersive.  Also, since the excitation of a Bloch state is its Fourier transform, for the
highly localized s states the excitation is also quite a slowly varying function over the
objective aperture range, and can therefore be replaced by an average excitation

a b

c d



Figure 19.  Contributions to the image intensity in GaAs (110) from (a) the 1s Bloch state on the As column,
(b) the Ga 1s state, (c) both Ga and As 1s states, (d) all 265 states, showing the effectiveness of the high
angle detector as a Bloch state filter.

εav = ∫ε1s(K) dK (41)

Now the only K dependence is in the aperture function, and we again have incoherent
imaging.  Transforming back to real space, the Fourier transform of the aperture
functions gives the probe intensity profile.  With the excitation slowly varying, we can
approximate the dynamical object function in the high thickness limit as a set of
weighted δ-functions.  The image is then given by

I(R0) = Cjj εav2
δ(Rj)* P2(R0), (42)

where Rj is the coordinate of column j.  For constant atom separation along a column,
the high angle components of the 1s states (Cjj) scale as Z2, as would be expected on
the basis of Rutherford scattering.  The excitation on axis, ε1s2(0), goes as 1/Z, but as
states from lighter columns are broader, their excitation falls off faster with K.  The two
factors largely cancel, and so, in the high thickness limit, we find the dynamical object
function is only slightly less than Z2.  In this limit we therefore see practically the
same contrast in the presence of dynamical diffraction as we would for single atoms.

1.6.4. Channeling Approximation

If we are not at the high thickness limit described above, we expect dynamical
oscillations with depth z due to the exponential term in Eqn. 29.  Although the 1s
states have by far the largest single Cjj value, not all of the incident beam can be
coupled into the s states.  Depth dependent oscillations come from the beating of the 1s
states with the sum of all the other states.  As noted before, the 1s states are located
over the deepest part of the projected potential and so have the highest kinetic energy
and the largest kz

j.  All the other less localised states have very similar kz
j values, and

so in thin crystals they all propagate approximately in phase through the thickness z.
Therefore it is a good approximation to consider just two components to the electron
wave function, the 1s state propagating with wavevector kz

1s, and a term
1- b1s(R) propagating at an average kz

0.  The beating between these two components
occurs with an extinction distance ξ = 2π/( kz

1s - kz
0).  Replacing the cjj term by Z2, the

depth dependent object function for a column is now given by

OC(R,z) = Z2εav2
[1 - cos(2πz/ξ)] e-2µ1s(0)z (43)



where we have included absorption, as the 1s states are the most highly absorbed Bloch
states.  Figure 20 shows a plot of this function for Si and Ge in the 〈110〉 orientation,
compared to the 1s state intensities alone.

This expression assumes all scattering is coherent.  Experimental images do not
show these strong depth oscillations because most of the scattering reaching the detector
is thermal diffuse scattering.  We are detecting the absorption out of the coherent
wavefield described by Eqn. 43.  The phonons are again breaking the z-coherence  and
allowing us to integrate the generation of high angle diffuse scattering

over the thickness t of the crystal.  Integrating Eqn. 43 gives

OTDS(R,t) = 

� 

Z 2ε av2

ξ 2µ1s2
+ π 2( ) π 2 1− e−2µ 1s t( ) − ξ 2µ1s2

e−2µ 1s t 1− cos 2πt
ξ

 
  

 
  − πξµ1se−2µ 1s t sin 2πt

ξ
 

 
 
 

 

 
 
 

 (44)

which is plotted in Fig. 21.  The thickness integration has removed the strong
dynamical oscillations and the form of the curve is in good agreement with both
experimental observations and with multislice simulations for a high detection angle
(Loane, Xu and Silcox, 1992, Anderson, et. al., 1997, Hartel, Rose and Dinges 1996).
Under these conditions, the channeling approximation is very useful for simulating
images, and saves enormously on computer time.  For lower detection angles the other
states become more important, and a fraction of the coherent exit face wave function
OC(R,t) must be added.  The image contrast begins to show more oscillatory dependence
on thickness and the incoherent characteristics are progressively lost.  Also, single
heavy impurity atoms will sample the oscillating wavefield of Fig. 20, and so show
depth dependent contrast (Loane, Kirkland and Silcox, 1988, Nakamura et al., 1997).
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Figure 20.  Intensity of coherent scattering
reaching the annular detector from Si and Ge
〈110〉 using the channeling approximation, Eqn. 42.
Parameters are: Si, ξ=300Å, µ1s = 0.00048, Ge,
ξ = 169 Å, µ1s = 0.00032.

Figure 21.  Intensity of incoherent scattering
reaching the annular detector from Si and Ge
〈110〉 using the channeling approximation, Eqn.
43.  Parameters are: the same as Fig. 20.
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Another important situation where other states become significant is if the atomic
columns are no longer straight, but bent due to the presence of a defect or impurity.
Then transitions occur between Bloch states which is the origin of diffraction contrast
imaging in the CTEM, and diffraction contrast effects will also be seen in the annular
detector signal, as discussed below.

1.7. STRAIN CONTRAST

Elastic strain fields due to impurities, point defects or extended defects such as
dislocations and stacking faults will induce transitions into or out of the 1s Bloch
states.  This is the usual mechanism of diffraction contrast in CTEM images, and
clearly, will also be a source of contrast in the annular detector image.  In general,
transitions will again depend on depth in the crystal, giving oscillatory contrast from

Figure 22. (a) Bright field and (b) annular dark field STEM images of inclined dislocations in a thick
Si/Si(B) superlattice

inclined dislocations, as seen in Fig. 22 (Perovic, Rossouw and Howie, 1993, Perovic,
Howie and Rossouw, 1993).  For zone axis imaging, the periodicity will be the
extinction length ξ as seen in Fig. 20.  Even dislocations that are viewed end-on may
show strain contrast due to the transverse relaxations of the atomic positions that occur
near the sample surface.  For this reason, grain boundaries, which are closely spaced
arrays of dislocations, often appear brighter or darker than the matrix.  Strain contrast is
relatively long range compared to the lattice parameter and can be removed by Fourier
filtering if desired.  Strain contrast also depends strongly on detector angle, and can
therefore be distinguished from compositional changes (Z-contrast) by comparing
images taken with different inner detector angles, as shown below.

From our discussion of z-coherence, and its destruction by phonons, it is clear that
static transverse displacements comparable to the atomic vibration amplitude will also
significantly affect the scattering at high angles.  In the Einstein model of thermal
vibrations, atomic scattering cross sections can be defined for coherent and incoherent
scattering.  The coherent scattering is reduced by the Debye-Waller factor M = 8π2 uT

2 ,
where uT

2  is the mean square thermal vibration amplitude of the atom (Hall and Hirsch,
1965), and is given by



σc  =  f 2 e−2Ms 2
,  (45)

where f is the atomic form factor and s = (sinθB/λ) is the scattering angle. The
incoherent cross section is then

σTDS  =  f 2 1 − e−2Ms2( ) .  (46)

 In the presence of static random atomic displacements, assuming a Gaussian
distribution of strain with a mean square static displacement of uS

2 , the atomic scattering
cross section will be modified to (Hall, Hirsch and Booker, 1966)

σS  =  f 2 1 − e−2 M +M S( ) s2 
 

 
 .  (47)

where Ms = 8π2uS
2 .  It is clear from the form of these expressions that at a sufficiently

high scattering angle σc tends to zero and both σTDS and σS tend to the full atomic
scattering cross section f ! 2.  In other words no additional scattering due to strain will
occur.  At lower angles where the Debye-Waller factor is significant, static strains
comparable to the thermal vibration amplitude may lead to a significantly enhanced
scattering cross section.  

Figure 23 shows images of a thermally grown Si/SiO2 interface.  The bright field
phase contrast image, Fig. 23a, shows dark contrast that could be due to a number of
effects, such as strain, thickness variation, bending of the crystal or a combination of
these mechanisms.  Figure 23b shows an incoherent dark field image collected
simultaneously using a low (25 mrad) inner radius for the annular detector.  Now there
is a bright band near the interface indicating additional scattering.  With this image
alone, this additional scattering could be due either to strain or to the presence of some
heavy impurity atoms.  However, when the inner detector angle is increased further to
45 mrad the bright line disappears (Fig. 23c), showing that the contrast cannot be due
to the presence of heavy impurity atoms which would still give increased scattering.
The contrast must therefore be due to a static strain effect.  Intensity profiles across the
two dark field images are shown in Fig. 24.  Taking their ratio normalizes any change
in the s states due to the strain and allows the additional static displacement to be
calculated, as shown in Fig. 25 (Duscher et al., 1998).  This is seen to decrease
exponentially from the incoherent interface as would be expected for a uniform array of
misfit dislocations.



Figure 23. STEM images of a Si/SiO2 interface; (a) bright field phase contrast image, (b) Z-contrast image
with 25 mrad inner detector angle showing strain contrast, (c) Z-contrast image with 45 mrad inner detector
angle.  The horizontal line marks the last Si plane used for strain profiling.

2.  Retrieval of the Object Function

The key advantage of an incoherent image is avoidance of the phase problem associated
with coherent imaging.  As there are no phases in an incoherent image, no phase
information can be lost, and we have the possibility of direct inversion from the image
back to the object.  This of course is the reason that an incoherent image can be
interpreted intuitively.  All that is lost in recording the incoherent image is information
on the high spatial frequencies in the object, lost because of the convolution with a
probe of finite width.  It might naturally be assumed that to retrieve the object, all that
would be required would be to deconvolute the probe from the image.  But unfortunately
this does not work, because it does not retrieve the lost high frequency information.
All deconvolution can do is to correct for the decaying transfer function t(ρ) by dividing
in Fourier space,

O(ρ) = 
I ρ( )
t ρ( ) . (48)

This fails as the transfer function approaches zero, and in the Wiener filter method the
object frequency is decayed to zero at the cutoff of the transfer function by the addition
of a small constant ε

Figure 24. Intensity profiles across the Z-contrast
images of Fig. 23.  The high angle profile shows
the dechanneling effect near the interface which
can be used to normalise the profile obtained with
lower detector angle.

Figure 25. RMS atomic displacement due to
static strain induced by the Si/SiO2 interface
and an exponential decay fitted to the data.
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O(ρ) = 
t * ρ( )I ρ( )
t ρ( ) 2

+ ε
. (49)

 The results of such a Wiener filter deconvolution are shown in Fig. 26.  A raw
image of Si〈110〉 is shown in (a) (Nellist and Pennycook, 1998b).  The result of a
simple Fourier filter to remove the noise is seen in (b), and the effect of the Wiener
filter is shown in (c).  Unfortunately, the effect of the filter is to produce artifacts
between the columns.  These arise because of the abrupt cutoff in transfer imposed near
the maximum spatial frequency of the data.  To avoid such artifacts, a slower cutoff can
be imposed on the image but obviously this would also degrade the resolution.  In fact,
the natural incoherent transfer function is already rather well optimized, and it is not
useful to attempt to improve upon it in this way.

An alternative method is required to reconstruct the missing high frequency
information.  For atoms wide apart, it is reasonable to locate the maximum of each
image feature, which is using our a priori information that the sample comprises
discrete atoms.  But this procedure does not work near the limit of resolution because it
does not take any account of the probe profile.  In Si〈110〉, pairs of columns are spaced
by distances comparable to the probe size, and the peak image intensity is displaced
outwards by a few tenths of an angstrom depending on defocus.  A method to accurately
account for the effects of the convolution is maximum entropy (Gull and Skilling,
1984).  This assumes no prior knowledge concerning the nature of the image, except
that it is incoherent.  



Figure 26. (a) Raw Z-contrast image of Si 〈110〉; (b) low pass filtered image to reduce noise; (c)
deconvolution of the probe function leads to artifacts between the columns; (d) maximum entropy retrieves
the correct object giving a reconstructed image free of artifacts.

The maximum entropy method is based on Bayes theorem, which states that

p(ab) p(b) = p(ba) p(a) (50)

that is p(ab), the probability of a given b, multiplied by the probability of b is equal
to the probability of b given a, multiplied by the probability of a.  For our case we
know the image data and suppose we also know the probe function, or we pick a trial
probe function.  We then need to be able to assess the probability of different trial
object functions.  So we write

p(object functionimage data) p(image data) = p(image data object function)
                  p(object function). (51)

Now the probability of the image data is a constant (we are tying to assess the most
likely object from a given image), and so we have



p(object functionimage data)  = k p(image data object function) p(object function)
(52)

where k is a constant.  As we know the probe profile we can convolute it with our trial
object function and compute the probability of the image data given our simulated
image using a χ2 fit for example.  All we need is an expression for p(object function), a
means of assessing the probability of different object functions.  Because any
distribution of high spatial frequencies beyond our image cutoff will give equally good
fits to the data, there are an infinite number of possible object functions that will give
the same simulated image, and therefore the same value of p(image data  object
function).  It is the function of the prior distribution function, p(object function), to
assess the one which is the most likely.  Maximum entropy weights different object
functions according to

p(object function) = eαS (53)

where α is a constant and S is the entropy, given by

S = -
i

∑ ni log ni (54)

where ni is the value of pixel i in the object function.  The maximum entropy prior
weights in the direction of least structure (maximum disorder).  It will not give three
columns where two would do, and is therefore a convenient prior for atomic resolution
imaging.  Note that nowhere do we assume that the object is comprised of discrete
atoms.

(b)(a) 0.2nm

Figure 27.  (a) Z-contrast image of an end-on threading dislocation in a GaN thin film grown on sapphire,
viewed along the 〈0001〉 direction.  The eight-fold structure of the core is clear from the maximum entropy
reconstruction (b).



Figure 26d shows the reconstructed Si〈110〉 image, obtained by convoluting the
maximum entropy object with the probe profile, where the artifacts between the
columns are no longer present.  Figure 27 shows a raw image of an end on dislocation
core in GaN, with the atomic structure of the core determined by maximum entropy
(Xin et al., 1998).  In a good reconstruction, the maximum entropy object function
consists of fine points, which can be taken directly as the column coordinates.  The
accuracy of the method is easily checked by measuring spacings far from the dislocation
core, and here, as found typically, is approximately ± 0.1!Å for individual columns.
More detailed descriptions of the maximum entropy approach applied to Z-contrast
images, its accuracy and comparison with alternative schemes, are given in McGibbon,
Pennycook and Jesson, 1998, Nellist and Pennycook, 1998b.

3.  Atomic Resolution Spectroscopy

The Z-contrast image uses only the high angle scattering, this leaves the lower angles
available for electron energy loss spectroscopy (EELS).  Indeed, it is the availability of
the incoherent Z-contrast image that allows the probe to be located over a selected
individual atomic column or plane with very high precision.  The probe can be centered
over a chosen column just by maximising the annular detector intensity.  Provided that
incoherent imaging conditions also apply to the EELS signal, the inelastic scattering
from that column will also be maximised at the same probe position, giving an atom
column resolved analysis (Browning, Chisholm and Pennycook, 1993, Batson, 1993,
Browning and Pennycook, 1995).

With the phase contrast image of a CTEM it is not so simple to accurately
illuminate an individual column.  Neither is it practical to form an energy filtered image
at atomic resolution except from low loss electrons.  In CTEM the objective lens is
behind the specimen (Fig. 3a), so that the energy-loss electrons will suffer chromatic
aberration on passing through the lens to form an image.  For the energy filtered image
to show atomic resolution, the energy window selected by the filter must be kept below
1 eV, which for core edges will lead to a very noisy image.  The information is more
efficiently gathered in STEM mode by illuminating the chosen column, and collecting
the transmission EELS spectrum.  Chromatic aberration in the objective lens no longer
degrades the spatial resolution.  The simultaneous use of atomic resolution imaging and
analysis in the STEM has proved to be a powerful means for determining atomic
structure, atomic sites of impurity atoms and their valence, and the local band structure
seen by the selected column.  In principle, atomic resolution is also possible using X-
ray fluorescence, but to date it has been demonstrated only for EELS, because of the
much lower detection efficiency for X-rays.

Much of the discussion on incoherent imaging with elastically scattered electrons
can be carried over to the case of inelastically scattered electrons (Pennycook et al.
1997).  For example, it has been realized for some time that collecting all the
inelastically scattered electrons will give an incoherent image (Rose, 1976, Ritchie and
Howie, 1988).  The inelastic object function is given by
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where the momentum transfer is now three-dimensional, q = (K,qz), because of the
minimum momentum transfer qz at zero scattering angle.  ρno is the transition matrix
element from an initial state |0〉 to a final state |n〉 and v is the electron velocity.  These
are often evaluated in the hydrogenic approximation (Maslen and Rossouw, 1984,
Rossouw and Maslen, 1984, Allen, 1993, Holbrook and Bird, 1995, Pennycook et
al.,1997, Rafferty and Pennycook, 1998).  

Inelastic object functions are
significantly broader than elastic
object functions, due not so
much to the size of the inner
shell itself, but to the fact that
less transverse momentum is
available from the light electron
compared to the heavy nucleus.
The full-width-half-maxima for
several elements are shown in
Fig. 28, and are below 1 Å even
for the light elements, suggesting
atomic resolution will still be
possible with a suitably small
probe.  For considerations of
contrast, one can think of the
image as given by an effective
probe convoluted with delta
functions, as in the elastic case.
The effective probe is now the real probe convoluted with the inelastic object function,
P2

eff(R) = P2(R)*O′(R) which is equivalent to a transfer function t'(ρ) = t(ρ)Ο'(ρ).
To show that spectroscopy can be performed on individual  atomic columns selected

from the Z-contrast image, Fig. 29 shows an example of a Mn-doped SrTiO3 grain
boundary.   Significant changes in both concentration and band structure are observed
from column to column (Duscher, Browning and Pennycook, 1998).  The Mn is seen
to prefer the Ti sites in the grain boundary, and from the Ti LII/III ratio, appears to
change its valence state from 4+ in the bulk to 3+ at the boundary.  Data of this nature
is particularly valuable for linking the structure of the grain boundary to its electrical
activity.  However, the images shown here were taken on the 300 kV STEM whereas
the EELS spectra were taken on the 100 kV STEM, with only a 2.2!Å probe size. This
is apparent in the fact that even with the probe located over the Sr columns, which do
not themselves contain O, a strong O edge is observed from the four O columns only
1.95!Å away.

Figure 28. Full-width-half-maxima of EELS
object functions for K-shell excitations by 300 kV
incident electrons, calculated in the hydrogenic
model
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Figure 29.  Z-contrast image of a Mn-doped SrTiO3 grain boundary with EELS spectra obtained from
selected atomic columns.

A more detailed discussion of atomic
resolution EELS and comparison to the
spatial difference method is given in
Duscher, Browning and Pennycook, 1998.
EELS is particularly useful for analyzing
elements such as oxygen which are too
light to be seen directly in the Z-contrast
image (McGibbon et al., 1994, Dickey et
al., 1998).  It has been used for example
to map hole concentrations in the high
temperature superconductors at a spatial
resolution below the superconducting
coherence length.  Significant differences
were found at grain boundaries depending
on boundary geometry (Browning et al.,
1993, 1998).

EELS is also useful at an amorphous crystal interface, where it can provide valuable
information on the composition of the amorphous phase near the interface.  Figure 30
shows a series of Si-L2,3 ionization edges from a Si/SiO2 interface produced by
oxidation with a gaseous oxygen/nitrogen source (Duscher et al., 1998).  Each spectrum
is obtained with the probe located at a different distance from the interface, as determined
from the Z-contrast image.  Due to the large band gap of the SiO2, the onset of the
ionization edge is 104 eV in the SiO2 compared to 99 eV in the Si.  It is clear that the
edge profile evolves from Si to SiO2 over a surprisingly extended region, greater than 2
nm.  This is almost an order of magnitude greater than the spatial resolution of the
measurement.  Similar data was obtained from the O-K edge, providing an independent
verification of an extended sub-stoichiometric zone.

Figure 30.  Si-L2,3 spectra across a Si/SiO2
interface showing evolution of the SiO2 band
gap.  The full gap is not established until 2.4
nm into the oxide.
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4.  Applications in Materials Science

Theoretical modeling is a valuable complement to these techniques of atomic scale
characterization.   It can choose between different models that agree with the image,
models that differ in their arrangement in the z-direction for example.  In particular,
first-principles total energy calculations can take the coordinates provided by the image
and relax them in a fully self consistent manner, thereby testing if the proposed
structure is stable, and avoiding the need for increasing the accuracy of the image
inversion.  The final total energy can be used to determine grain boundary energies,
segregation energies and transformation energies for example.  Following relaxation,
the electron distribution within the structure is known, from which all properties can in
principle be derived and compared to experiment.  This combination of Z-contrast
imaging, EELS and theory is highly synergistic; by providing atomic coordinates from
experiment we avoid the need for time-consuming searches  of trial model structures
with the computer.  Theory, in turn, often suggests new directions for experiment.
Below are two recent examples of combined experimental and theoretical studies, and
some additional recent experimental studies.

4.1. ARSENIC SEGREGATION SITES AT A SILICON GRAIN BOUNDARY

Z-contrast imaging enables low concentrations of high-Z impurities to be observed
directly, as shown in Fig. 31, a Z-contrast image of a grain boundary in Si, after doping
with As (Chisholm et al., 1998).  The atomic structure of the boundary is directly
determined from the positions of the bright features in the image, and is different from
all structures proposed previously.  It comprises a continuous sequence of dislocation
cores, a perfect edge dislocation (1) and two perfect mixed dislocations (2,3) arranged as
a dipole, followed by the same sequence (1',2',3') mirrored across the boundary plane.
In the 〈001〉 projection, these dislocations appear as a connected array of pentagonal and
triangular arrangements of atomic columns.  One of the dislocation cores contains
columns that are 20% brighter on average than other similar columns, indicating the
presence of As atoms.  The increased intensity corresponds to an average of only 5% As
concentration, approximately two As atoms in each atomic column.

Ab-initio theoretical studies added significant further insight.  It was found that
isolated As atoms have only a small segregation energy of ~ 0.1 eV in all the
dislocation cores, not showing preference for any site in the boundary.  Arsenic dimers,
on the other hand, were found to have a substantial segregation energy (Maiti et al.,
1996).  Most significantly, with a dilute concentration of As dimers, preference was
found for those sites seen bright in the image, with the segregation energy being
consistent with the As solubility limit in the bulk at the 700˚C annealing temperature.
A remarkably detailed and consistent atomic-scale picture of impurity segregation has
been achieved for this grain boundary.
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Figure 31.  Z-contrast image of a 23˚ [001] tilt grain boundary in Si showing its unexpectedly complex
structure.  The five-fold rings (with black centers in the image) are dislocation cores arranged in a
repeating sequence along the boundary.  Columns shown black in the schematic are those seen brighter in
the image due to segregated As.

4.2. IMPURITY-INDUCED GRAIN BOUNDARY TRANSFORMATION IN
MgO

In Fig. 32, STEM imaging of an MgO grain boundary (Yan et al., 1998a) reveals a
structure that is inconsistent with the widely accepted structure of the boundary
proposed by Harris et al. (1996) based on theoretical modelling using classical
potentials.  The observed structure is similar to that proposed much earlier by Kingery
(1974).  These two structures are compared in Fig. 32, where the large empty core of
the Harris structure is obviously very different from the more dense core of the Kingery
model.  On careful examination of the intensity in the experimental image, it can be
seen that certain specific atomic columns at the grain boundary are significantly brighter
than neighboring columns, as arrowed in the figure.  This suggests that impurities,
with Z > 12, may be segregated at these sites.  EELS measurements indeed established
that significant concentrations of Ca were present in the grain boundary, 0.3
monolayers, consistent with the bright intensity in the image.

To reconcile these observations with the prior experimental and theoretical work,
first-principles theoretical calculations were performed.  These calculations in fact
reproduced the results of the classical potential calculations for the clean grain boundary,
indicating the open structure to be 0.5 eV lower in energy per periodic repeat unit.
Theory further determined that Ca has a large segregation energy in both boundary
structures, but significantly higher in the dense structure, sufficient to make the dense
structure the lower energy boundary.  These calculations therefore established that the
dense structure is in fact stabilized by the Ca segregation, an example of a segregation
induced structural transformation.  Examination of the electronic charge distribution
revealed just a small perturbation to the oxygen ions next to the Ca atom, indicating
the transformation is structural not electronic in origin, i.e. it is driven by the size
difference between Ca and Mg ions.



Figure 32.  Z-contrast image from a 24˚ 〈001〉 tilt grain boundary in MgO showing occasional bright atomic
columns at the grain boundary (arrowed), compared to two structures for the 36˚ 〈001〉 tilt grain boundary
proposed by (a) Kingery (1974) and (b) Harris et al. (1996).  Sites of Ca segregation are arrowed.

4.3. ORDERING IN FERROELECTRIC PEROVSKITES

Z-contrast imaging (Yan et al., 1998b) has resolved a controversy over the ordered
structure of the lead-based relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 (PMN).  Two models
have been proposed, the space-charge model and the charge-balanced random-layer model
(Chen, Chan and Harmer, 1989) which differ in the distribution of the B-site cations in
the doubled unit cell.  In the space-charge model, the BI and BII sites are occupied
exclusively by the Mg2+ and Nb5+ cations, respectively, in the form
Pb(Mg1/2Nb1/2)O3.  The resulting net negative charge is assumed compensated by a
disordered, Nb5+ rich matrix.  In the charge-balanced random-layer model, microscopic
charge balance is achieved by occupying the BII columns exclusively by Nb5+ and the
BI columns with a random distribution of Mg2+ and Nb5+ in a 2:1 ratio.  Z-contrast
imaging along the [110] zone axis can easily distinguish these two cases.   In the space
charge structure, the ratio of BI column (Mg) to BII column (Nb) intensities is given by
approximately  1/17, whereas, in the charge-balanced random-layer structure it is close
to 1/4.  

Figure 33a shows a Z-contrast image of 25% La-doped PMN.  The La doping
increases the grain size significantly, ensuring that a single domain exists throughout
the thickness of the region imaged.  The intensity trace taken through the B sublattice
clearly shows the intensity ratio is consistent with the 1/4 value expected for the
charge-balanced random-layer model.  For comparison,  Fig 33b shows an image and
line trace from Ba(Mg1/3Nb2/3)O3 in which the B sites are fully occupied by either Mg
or Nb in a 2:1 ratio.  The line trace shows the expected very weak intensity from the
Mg column.  A somewhat higher intensity is observed from the Mg site on the left
hand side, indicating that the ordering is not entirely complete.  



Figure 33.  Z-contrast images of (a) 25% La-doped Pb(Mg1/3Nb2/3)O3, (b) Ba(Mg1/3Nb2/3)O3 with
intensity profiles across the B sublattice showing the PMN to have the charge-balanced random layer
structure.

Images were also taken from thin, undoped PMN.  Although the contrast was often
reduced due to the overlap of small domains through the sample thickness, the
maximum value seen was still 1/4.  This indicates that the ordered structure of undoped
PMN also follows the charge-balanced random-layer model.

4.4. COMPLEX ATOMIC STRUCTURE OF In2O3-ZnO CONDUCTING FILMS

Z-contrast imaging of the transparent conducting oxide In2O3(ZnO)k has revealed a
surprisingly complex atomic structure, containing inversion and mirror domain
boundaries as an integral part of the structure (Yan et al., 1998c).   In and Zn columns
are directly distinguishable in a Z-contrast image taken along the [1120 ] zone axis.
Figure 34 shows an image of a layered structure observed in a film with nominal
composition In2O3(ZnO)2, after annealing at 900 °C for six hours in 20% argon 80%
oxygen at 3.5 Torr.  About 50 % of all grains were found to have this layered
structure.  It is immediately clear that each In intergrowth layer (seen bright) consists of
only a single layer of In atoms, inconsistent with the model proposed by Cannard and
Tilley (1988) in which two {111} planes of cubic In2O3 were suggested.  Additionally,
the distance between two adjacent In-O layers varies between 4, 5 or 6 layers of (0002)
ZnO.  This is evidence of a polytypoid structure, with an average composition obtained
from the image of In2O3(ZnO)10.  

Furthermore, the spacing between the In plane and its nearest Zn planes, denoted d1,
is measured to be approximately 0.31 nm, which is significantly larger than the Zn
(0002) interplanar spacing of 0.26 nm, denoted by d2. This unexpected spacing strongly
suggests that the single In layer is in fact an In-O octahedral layer, a result confirmed by
EELS.  The oxygen octahedra are oriented in such a way that the O and Zn layers form
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the regular wurtzite ZnO structure.  The polarity of the ZnO slabs either side of the In-
O octahedral layer must therefore be opposite, so that the In-O layer is acting as an
inversion domain boundary (IDB).  In between the In-O layers is another polarity
reversal, a mirror domain boundary (MDB) where Zn atoms form a rectangular pattern.
It is clear that the microstructure of annealed transparent In2O3-ZnO contains closely
spaced inversion and mirror domain boundaries as an integral part of its structure.

Figure 34.  (a) Z-contrast image of an In2O3-ZnO film taken along the [ 1120 ] zone axis showing a
polytypoid structure with an average composition of In2O3(ZnO)1 0.  (b) structure deduced from the
measured cation positions.  The single In layer is an In-O octahedral layer inducing an inversion domain
boundary (IDB) in the adjacent ZnO layers, which is reversed by the mirror domain boundary (MDB).
Large circles denote cations, small circles O, white and black denote different heights.

5.  Future Directions

If you consider that the wavelength of a 300 kV electron is less than 0.02 Å, then
our achievement of resolutions of 1.3 Å would seem rather poor.  Of course, this is due
to the enormously large aberrations of the electron lenses which limit the usable
apertures to only 10 mrad or so, about half a degree.  It has been realized for decades that
correction of the spherical aberration would bring great benefits in resolution, and there
have been numerous proposals and attempts over the years (Hawkes, 1997, Dellby,
Krivanek and Lupini, 1998).  Correctors must resort to elements with non-cylindrical
symmetry, and are optically rather complex.  Only recently therefore, due in large part
to the advent of the computer, have systems been developed with the capability for



precise alignment and the necessary stability.  Again the STEM appears to have a
significant advantage, in that the objective lens is before the sample and we avoid
problems with chromatic aberration due to electrons having lost energy in the
specimen.  Indeed, as the STEM image contrast comes only from overlaps between
neighboring illumination discs (see Fig. 12), there is a line down the center of each
overlap region that is achromatic, where the path from each disc passes at equal angles
through the objective lens.  The STEM annular detector image is therefore much more
robust towards chromatic aberration effects such as energy spread and fluctuations in
objective lens current than the axial phase contrast image (Nellist and Pennycook,
1998c).  Because of the rapidly oscillating phase contrast transfer function, such
fluctuations lead to an exponential damping envelope, and the so-called information
limit is much reduced compared to incoherent imaging.

An example of the anticipated improvement in probe profile is seen in Fig. 35,
Not only is the central peak significantly sharpened to a FWHM of 0.5 Å, but the
extended probe tails have largely been eliminated.  It is precisely these extended tails
that were responsible for the intensity seen between the dumbbells in the raw image of
Si 〈110〉 (Fig 26).  For
analysis such tails are equally
undesirable; with a probe
located over a selected
column, the tails may put a
significant fraction of the total
probe current down
neighboring columns.

It is clear that if such
devices are realized in practice
then imaging and analysis
will benefit enormously from
the increased sensitivity.  It is
not so much the additional
spacings that will become
available, it is that we will be
able to image and analyze all
materials with single atomic
column sensitivity.  By
increasing the current down
our selected column, and
simultaneously decreasing the
current illuminating
surrounding columns, we will
enormously improve the
image contrast and the
analytical sensitivity.  It will
be possible to image oxygen
columns in the high Tc
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Figure 35.  Improvement in probe profile anticipated for the
HB603U STEM by correction of spherical aberration.  Upper
panel shows probe profile and image for our present system,
lower panel shows the effect of Cs correction.  The integrated
intensity in the two probes is equal, but the central peak of the
corrected probe is seven times greater.  (Courtesy O. Krivanek).



superconductors, and place the probe over a selected oxygen column to measure local
hole concentration.  The range of catalyst atoms and clusters visible on the surface of γ-
alumina will be greatly extended.  It will become possible to image and analyze single
impurity atoms in specific columns at a grain boundary or dislocation core, and to see
the effect on local electronic structure.  Indeed we appear to be on the threshold of
finally understanding the atomic origins of materials properties.

6.  Acknowledgements

The authors are grateful to their colleagues  M. F. Chisholm, Y. Yan, G. Duscher,
Y. Xin, H. J. Gao, E. C. Dickey, N. D. Browning, V. P. Dravid, D. E. Jesson, B.
Rafferty, N. Tanaka, D. Perovic, A. Maiti and S. T. Pantelides for research
collaborations and permission to reproduce results. This research was supported by
Lockheed Martin Energy Research Corp. under DOE Contract No. DE-AC05-
96OR22464, and by appointments to the ORNL Postdoctoral Research Associates
Program administered jointly by ORNL and ORISE.

7.  References

Ade, G. (1977) On the incoherent imaging in the scanning transmission electron microsocpe, Optik 49,

113–116.

Allen, L. J. (1993) Electron energy loss spectroscopy in a crystalline environment using inner-shell

ionization, Ultramicroscopy 48, 97-106.

Anderson, S. C., Birkeland, C. R., Anstis, G. R., and Cockayne, D. J. H. (1997) An approach to quantitative

compositional profiling at near atomic resolution using high-angle annular dark-field imaging,

Ultramicroscopy 69, 83–103.

Batson, P. E. (1993) Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic

column sensitivity, Nature 366, 727–728.

Browning, N. D., Chisholm, M. F., and Pennycook, S. J. (1993) Atomic-resolution chemical analysis using a

scanning transmission electron microscope, Nature 366,143–146.

Browning, N. D., Chisholm, M. F., Nellist, P. D., Pennycook, S. J., Norton, D. P., and Lowndes, D. H. (1993)

Correlation between hole depletion and atomic structure at high-angle grain boundaries in

YBa2Cu3O7-δ., Physica C 212, 185–190.

Browning, N. D. and Pennycook, S. J. (1995) Atomic-resolution electron energy loss spectroscopy in the

scanning transmission electron microscope, J. Microsc. 180, 230–237.

Browning, N. D., Buban, J. P., Nellist, P. D., Norton, D. P., Chisholm, M. F., and Pennycook, S. J. (1998)

The atomic origins of reduced critical currents at [001] tilt grain boundaries in YBa2Cu3O7-δ thin films,

Physica C 294:183–193.



Cannard, P. J. and Tilley, R. J. D. (1988) New intergrowth phases in the ZnO-In2O3 system, J. Solid State

Chem. 73, 418–426.

Chen, J., Chan, H. M., and Harmer, M. P. (1989) Ordering structure and dielectric properties of undoped

and La/Na-doped Pb(Mg1/3Nb2/3)O3, J. Am. Ceram. Soc. 72, 593–598.

Chisholm, M. F., Maiti, A., Pennycook, S. J., and Pantelides, S. T. (1998) Atomic configurations and

energetics of arsenic impurities in a silicon grain boundary, Phys. Rev. Lett. 81, 132–135.

Cowley, J. M. (1969) Image contrast in a transmission scanning electron microscope, Appl. Phys. Lett. 15,

58–59.

Cowley, J. M. (1986) Principles of image formation in J. J. Hren, J. I. Goldstein, and D. C. Joy (eds.),

Principles of Analytical Electron Microscopy, Plenum Press, New York, New York, pp. 343–368.

Cowley, J. M. (1976) Scanning transmission electron microscopy of thin specimens, Ultramicroscopy 2,

3–16.

Crewe, A. V., Wall, J., and Langmore, J. (1970) Visibility of single atoms, Science 168, 1338–1340.

Crewe, A. V. and Salzman, D. B. (1982) On the optimum resolution for a corrected STEM,

Ultramicroscopy 9, 373–378.

Datye, A. K. and Smith, D. J. (1992) The study of heterogeneous catalysts by high-resolution transmission

electron microscopy, Catal. Rev.-Sci. Eng. 34, 129–178.

Dellby, N., Krivanek, O. L. and Lupini, A. R. (1998) Aberration correction in the STEM, Ultramicroscopy,

(in press).

Dickey, E. C., Dravid, V. P., Nellist, P. D., Wallis, D. J., and Pennycook, S. J. (1998) Three-dimensional

atomic structure of NiO-ZrO2(cubic) interfaces, Acta Mater. 46, 1801–1816.

Duscher, G., Browning, N. D., and Pennycook, S. J. (1998) Atom column resolved electron energy loss

spectroscopy, Phys. Stat. Sol. (a) 166, 327–342.

Duscher, G., Pennycook, S. J., Browning, N. D., Rupangudi, R., Takoudis, C., Gao,H-J., and Singh, R.

(1998) Structure, composition and strain profiling of Si/SiO2 interfaces, Proceedings of International

Conference on Characterization and Metrology for ULSI Technology, Gaithersburg, Maryland,

March 23–27, pp 191-195.

Engel, A., Wiggins, J. W., and Woodruff, D. C. (1974) A comparison of calculated images generated by

six modes of transmission electron microscopy, J.!Appl. Phys. 45, 2739–2747.

Grigorian, I., Williams, K. A., Fang, S., Sumanasekera, G. U., Loper, A. L., Dickey, E. C., Pennycook, S. J.

and Ecklund, P. C. (1998) Reversible intercalation of charged iodine chains into carbon nanotube

ropes, Phys. Rev. Letts80, 5560–5563.

Gull, S. F. and Skilling, J. (1984) Maximum entropy methods in image processing,  IEE Proc. 131F,

646–659.



Hall, C. R. and Hirsch, P. B. (1965) Effect of thermal diffuse scattering on propagation of high energy

electrons through crystals, Proc. Roy. Soc. A 286, 158–177.

Hall, C. R., Hirsch, P. B., and Booker, G. R. (1966) Effects of point defects on absorption of high energy

electrons passing through crystals, Phil. Mag. 14, 979–989.

Harris, D. J., Watson, G. W., and Parker, S. C. (1996) Atomistic simulation of the effect of temperature and

pressure on the [001] symmetric tilt grain boundaries of MgO, Phil. Mag. A74, 407–418.

Hartel, P., Rose, H., and Dinges, C. (1996) Conditions and reasons for incoherent imaging in STEM,

Ultramicroscopy 63, 93–114.

Hawkes, P.W. (1997) Aberrations, in J. Orloff, (ed.), Handbook of Charged Particles Optics , CRC Press,

Boca Raton and New York.

Holbrook, O. F. and Bird, D. M. (1995) Theoretical modelling of the size and shape of atomic images

formed with inelastically scattered electrons, Proceedings of Microscopy and Analysis 1995 , Jones and

Begall, New York, pp. 278-279.

Howie, A. (1979) Image contrast and localized signal selection techniques, J.!Microsc. 117, 11-23.

Kingery, W. D. (1974) Plausible concepts necessary and sufficient for interpretation of ceramic grain-

boundary phenomena:  I, grain-boundary characteristics, structure, and electrostatic potential, J. Am.

Cer. Soc., 57, 1–8.

Isaacson, M. S., Ohtusuki, M., and Utlaut, M. (1979) Electron microscopy of individual atoms, in J. J. Hren,

J. I. Goldstein, and D. C. Joy (eds.), Introduction to Analytical Electron Microscopy, Plenum Press,

New York, New York, pp. 343–368.

Jesson, D. E. and Pennycook, S. J. (1993) Incoherent imaging of thin specimens using coherently scattered

electrons, Proc. Roy. Soc. (London) A 441, 261–281.

Jesson, D. E. and Pennycook, S. J. (1995) Incoherent imaging of crystals using thermally scattered

electrons, Proc. Roy. Soc. (London) A 449, 273–293.

Loane, R. F., Kirkland, E. J., and Silcox, J. (1988) Visibility of single heavy atoms on thin crystalline silicon

in simulated annular dark-field STEM images, Acta. Cryst. A44, 912-927.

Loane, R. F., Xu, P., and Silcox, J. (1992) Incoherent imaging of zone axis crystals with ADF STEM,

Ultramicroscopy  40, 121-138.

Maiti, A., Chisholm, M. F., Pennycook, S. J., and Pantelides, S. T. (1996) Dopant segregation at

semiconductor grain boundaries through cooperative chemical rebonding. Phys. Rev. Lett. 77,

1306–1309.

Maslen, V. W. and Rossouw, C. J. (1984) Implications of (e, 2e) scattering for inelastic electron diffraction

in crystals:  I. theoretical, Phil. Mag. A 49, 735-742.



McGibbon, A. J., Pennycook, S. J., and Jesson, D.E. (1998) Crystal structure retrieval by maximum entropy

analysis of atomic resolution incoherent images, J. Microsc. (in press).

McGibbon, M. M., Browning, N. D., Chisholm, M. F., McGibbon, A. J., Pennycook, S. J., Ravikumar, V.,

and Dravid, V. P. (1994) Direct determination of grain boundary atomic structure in SrTiO3, Science

266, 102–104.

Nakamura, K., Kakibayashi, H., Kanehori, K., and Tanaka, N., (1997) Position dependence of the visibility

of a single gold atom in HAADF-STEM image simulation,  J. Electron Microsc. 1, 33–43.

Nellist, P. D. and Pennycook, S. J. (1996) Direct imaging of the atomic configuration of ultra-dispersed

catalysts, Science 274, 413–415.

Nellist, P. D. and Pennycook, S. J. (1998a) Incoherent imaging using dynamically scattered coherent

electrons, Ultramicroscopy,   (in press).

Nellist, P. D. and Pennycook, S. J. (1998b) Accurate structure determination from image reconstruction in

ADF STEM, J. Microscopy  190, 159-170.

Nellist, P. D. and Pennycook, S. J. (1998c) Sub-ångstrom resolution TEM through under-focussed

incoherent imaging, Phys. Rev. Lett. (in press).

Pennycook, S. J. and Boatner, L. A. (1988) Chemically sensitive structure imaging with a scanning

transmission electron microscope, Nature 336, 565–567.

Pennycook, S. J. and Jesson, D. E. (1990) High-resolution incoherent imaging of crystals, Phys. Rev. Lett.

64, 938–941.

Pennycook, S. J. and Jesson, D. E. (1991) High-resolution Z-contrast imaging of crystals. Ultramicroscopy

37, 14–38.

Pennycook, S. J. and Jesson, D. E. (1992) Atomic resolution Z-contrast imaging of interfaces, Acta Metall.

Mater. 40, S149–S159.

Pennycook, S. J., Jesson, D. E., and Nellist, P. D. (1996) High angle dark field STEM for advanced

materials, J. Electron Microsc. 45, 36-43.

Pennycook, S. J., Jesson, D. E., Nellist, P. D., Chisholm, M. F., and Browning, N. D. (1997) Scanning

transmission electron microscopy:  Z-contrast, in  S. Amelinckx, D. van Dyck, J. van Landuyt, and G.

van Tendeloo (eds), Handbook of Microscopy,  VCH Publishers, Weinheim, Germany, pp. 595–620.

Perovic, D. D., Rossouw, C. J. and Howie, A., (1993) Imaging inelastic strains in high-angle annular dark

field scanning transmission electron microscopy, Ultramicroscopy 52, 353-359.

Perovic, D. D., Howie, A., and Rossouw, C. J. (1993) On the image contrast from dislocations in high-angle

annular dark-field scanning transmission electron microscopy, Phil. Mag. Lett. 67, 261–277.

Rafferty, B. and Pennycook, S. J. (1998) Towards atomic column-by-column spectroscopy,

Ultramicroscopy (in press).



Rayleigh, Lord (1896) On the theory of optical images with special reference to the microscope, Phil. Mag.

(5) 42, 167–195.

Ritchie, R. H. and Howie, A. (1988) Inelastic scattering probabilities in scanning transmission electron

microscopy, Phil. Mag. A 58, 753–767.

Rose, H. (1976) Image formation by inelastically scattered electrons in electron microscopy, Optik 45,

139–158 and 187–208.

Rossouw. C. J. and Maslen, V. W. (1984) Implications of (e, 2e) scattering for inelastic electron diffraction

in crystals II, application of the theory, Phil. Mag. A 49, 743-757.

Scherzer, O. (1949) The theoretical resolution limit of the electron microscope, J.!Appl. Phys. 20, 20–29.

Spence, J. C. H. and Cowley, J. M. (1978) Lattice imaging in STEM, Optik 50, 129-142.

Tanaka, N. et al., (1997) High-resolution observation of Si100-xVx amorphous alloys by HAADF-STEM,

Microscopy and Microanalysis 3, Suppl. 2 (Proc. Microsc. And Microan. ’97, Springer, New York,

1997), pp 719–720.

Treacy M. M. J., Howie, A. and Wilson, C. J. (1978) Z-contrast of Platinum and Palladium Catalysts, Phil.

Mag. 38, 569–585.

Treacy, M. M. J., Howie, A. and Pennycook, S. J. (1980) Z-contrast of supported catalyst particles on the

STEM, in Electron Microscopy and Analysis, 1979, T. Mulvey (ed.), (Inst. Phys. Conf. Ser. No. 52,

Institute of Physics, London and Bristol) pp. 261-264.

Warren, B. E. (1990) X-Ray Diffraction, Dover, New York.

Xin, Y., Pennycook, S. J., Browning, N. D., Nellist, P. D., Sivananthan, S., Omnès, F., Beaumont, B., Faurie,

J.-P. and Gibart P. (1998) Direct observation of the core structures of threading dislocations in GaN,

Appl. Phys. Lett. 72, 2680-2682.

Yan, Y., Chisholm, M. F., Duscher, G., Maiti, A., Pennycook, S. J., and Pantelides, S. T. (1998) Impurity

induced structural transformation of a MgO grain boundary, Phys. Rev. Lett. 81, 3675-3678.

Yan, Y., Pennycook, S. J., Xu, Z., and Viehland, D. (1998) Determination of the ordered structures of

Pb(Mg1/3Nb2/3)O3 and Ba(Mg1/3Nb2/3)O3 by atomic-resolution Z-contrast imaging Appl. Phys. Lett

72, 3145–3147.

Yan, Y., Pennycook, S. J., Dai, J., Chang, R. P. H., Wang, A., and Marks, T. J. (1998) Polytypoid structures

in annealed In2O3-ZnO Films, Appl. Phys. Lett. 2585-2587.

Yan, Y., Pennycook, S. J. and Tsai, A. P. (1998) Direct imaging of local chemical disorder and columnar

vacancies in ideal decagonal Al-Ni-Co quasicrystals, Phys. Rev. Lett. (in press).

Zeitler, E. and Thomson, M. G. R. (1970) Scanning transmission electron microscopy. Optik 31, 258–280

and 359–366.


