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Abstract

The technique of Z-contrast scanning transmission electron microscopy (STEM)
provides an incoherent image of crystals at atomic resolution.  There are no phases in
an incoherent image, therefore, no phase problem for structure determination.
Location of atom column positions in an image is greatly simplified.  In addition, the
resolution is a factor of two higher than in a coherent image, the information is more
highly localized, the intensity of atom columns directly reflects their mean square
atomic number (Z), and there are no contrast reversals with crystal thickness.  It is
also the only means to achieve spectroscopy from individual atomic columns.  Here
we give a simple but quantum mechanically correct description of this imaging
technique.  The value of the method lies in providing an approximate starting model
which can then be refined by other techniques such as X-ray or electron
crystallography or density-functional calculations.

1.  Introduction

Dynamical diffraction is the major limitation to structure determination by electron
methods. Here, we outline how Z-contrast STEM can effectively overcome this
limitation by providing an incoherent image with electrons.  In light microscopy,
incoherent imaging applies when there are no phase relations between the light
emitting from different points on the object.  No artifacts can therefore occur due to
interference and each point is simply blurred by the resolution of the optical system.
Strictly, incoherent imaging applies only for self-luminous objects.  However, for
non-luminous objects Lord Rayleigh showed over a century ago, before even the
discovery of the electron, that effective incoherent imaging could be achieved with a
convergent source of illumination provided by a condenser lens (Rayleigh, 1896).
We show that the equivalent with electrons is achieved in the STEM using a high
angle annular dark field (HAADF) detector.  The large angular range of this detector
integrates the diffraction pattern and gives an image that reflects just the total
scattered intensity reaching the detector for each position of the electron probe (see
Fig. 1a).  The details of the pattern are lost on integration – this is incoherent imaging.
Mathematically it is described as a convolution of a specimen or object function O(R)
with a resolution function which we will refer to as P2(R), recognizing that in our
case it is the STEM probe intensity profile.  The image intensity is then given by

I(R) = O(R) * P2(R). (1)

Here, the object function is a positive definite quantity.  Atoms are real, and have a
scattering cross section that is well known.  At high angles it is the Rutherford



scattering formula, with scattered intensity proportional to Z2, hence the terminology
Z-contrast imaging.  Phases only arise with coherent illumination, when scattering
from different atoms has well defined phase relationships.  Then we have a phase
problem.  In fact it is often not appreciated that atomic resolution incoherent imaging
in the STEM also requires high coherence, coherence of the probe.  Incoherent
imaging is a consequence of the detector, and we can obtain coherent and incoherent
images simultaneously with different detectors.  There have been several recent
reviews of Z-contrast imaging giving the mathematical details of the imaging process
(Nellist and Pennycook, 2000; Pennycook and Nellist, 1999).  These should be read in
conjunction with this article, the aim of which is somewhat different.  Here it is
intended to present a more physical picture of the imaging process, but one that is
nevertheless quantum mechanically accurate, and to explore some apparent
paradoxes: How do we picture the STEM probe and its travel through the specimen?
What about dynamical scattering?  Can we achieve channeling along a single atomic
column as a simple incoherent imaging process would seem to require?  The probe is
a coherent superposition of plane waves from the objective aperture, a spherical wave,
but they each have infinite extent.  How localized is our probe in reality?  At any one
time there is likely to be only one electron in the column.  How does this electron
undergo dynamical scattering?  Many questions such as these can only be appreciated
through quantum mechanics, so we will start by reviewing some of these principles in
the context of the electron microscope.
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Fig. 1.  (a) Schematic of the STEM showing

the formation of a Z-contrast image from a

zone-axis GaAs crystal by mapping the

intensity of high angle scattering as the probe

scans.  An incoherent image results, with

resolution determined by the probe and

intensity proportional to Z2, revealing the

sublattice polarity (image recorded with a VG

Microscopes HB603U microscope at 300 kV

with a probe size of 0.13 nm).  EELS may also

be performed with the same resolution as the

image by stopping the probe on selected

columns.

(b) Schematic showing the effective

propagation of the probe as viewed by the high

angle detector.  The wide range of the detector

imposes a small coherence envelope in the

specimen, effectively eliminating multiple

scattering effects (dynamical diffraction).  The

probe channels along individual atomic

columns and if small enough allows column-

by-column imaging and spectroscopy.

2.  Quantum Mechanical Aspects of Electron Microscopy

A.  Imaging

The central concept in quantum mechanics is that of wave-particle duality, with which
we are all familiar, but it manifests itself in intriguing ways in the electron
microscope.  Electron diffraction was the original evidence of the wave nature of the
electron, but if we reduce the intensity of the diffraction pattern we see individual
flashes of light.  Quantum mechanics prescribes that the diffraction pattern is now
interpreted as the probability that the electron strikes a certain position on the screen
or detector.  Thus even a single electron explores all possible pathways and undergoes
the entire interference process of diffraction, even though the wave function finally
collapses to a point when it reaches the detector.  But that point, the position of the
flash, is only determined when the electron hits the screen, not when the electron



position of the flash, is only determined when the electron hits the screen, not when 
the electron leaves the specimen.  In a Young’s slit experiment, if one slit is covered 
up the diffraction pattern is destroyed, even if there is only one electron at a time 
hitting the screen.  If all paths remain open then we see the diffraction pattern.  Each 
electron must explore all paths to form the interference pattern.   

So when does the specimen recoil?  If an electron strikes our high angle detector on 
the left, say, then the sample must obviously recoil to the right, and vice versa.  But 
the momentum transfer is not decided until the wave function collapses into a flash on 
the screen. Clearly, therefore, the recoil also cannot occur until the electron hits the 
screen.  This may be several nanoseconds after it passed through the specimen.  We 
cannot subdivide the process into scattering and propagation.  It is one quantum 
mechanical event.  The electron microscope is a fine example of the non-local nature 
of quantum mechanics.  The scattering really does not occur until we see it. 

It should not be surprising, therefore, that the image of the sample depends on how we 
look at it.  We shall begin with the formation of the probe.  Following the Feynman 
view that the electron explores all possible pathways, and the final amplitude is the 
sum over all, each with the appropriate phase factor, we see from Fig. 2 that the probe 
amplitude distribution P(R) is given by  

 P(R) = ∫ A (K) eiγ(K) ei(K·R) dK, (2) 

where R, K, are two-dimensional position vectors in real 
and reciprocal space respectively, A(K) is the amplitude in 
the objective lens back focal plane (1 inside the aperture 
and zero outside) and γ(K) is the objective lens transfer 
function phase factor.  In an uncorrected system the only 
two significant contributions (assuming the microscope is 
well aligned and stigmated) are defocus and spherical 
aberration, in which case the transfer function γ is 
azimuthally symmetric, given by 
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where Cs is the objective lens spherical aberration 
coefficient and Δf is the defocus.   

The probe can be thought of as a coherent superposition of plane waves, but cannot 
be thought of as comprising those plane waves individually.  Individual angles in the 
probe are not independent.  The entire probe is coherent, and is better thought of as a 
spherical wave converging onto the sample.  It is a single electron in a particular state, 
a converging spherical wave, that we describe as a superposition of plane waves 
primarily for mathematical convenience.  We can calculate its amplitude (and hence 
its intensity) distribution as a function of defocus, as shown in Fig. 3.  But it is one 
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Fig. 2.  A coherent plane 
wave is focused to a coherent 
probe by the objective lens. 



electron and we must not try to subdivide it into component parts.  The so-called 
component plane waves have no independent existence.   

Fig. 3.  Probe intensity profiles for a 300 kV probe formed by an objective lens with Cs of 1mm.  As 
analyzed first by Scherzer, the best balance between resolution (a narrow central peak) and contrast 
(minimum intensity in the probe tails) is obtained with an optimum aperture semiangle of 1.41(λ/Cs)1/4 
= 9.4 mrad and a defocus of -(λCs)1/2 = -44.4 nm, which gives a full-width-half-maximum of 
0.43Cs

1/4λ3/4 = 0.127 nm. 

It is tempting to use the computer to propagate such a probe through a zone axis 
crystal and examine the intensity inside.  We would see peaks develop on the atomic 
columns, which we would interpret as a channeling effect, but we would also see 
much spreading of the probe onto adjacent columns and in between.  But 
interpretation of such data needs care.  The intensity inside the crystal can be 
calculated but cannot be observed.  In view of the comments above it can be rather 
dangerous to draw conclusions from such studies on issues such as image localization.  
The only intensity that is observable is in the detector plane (see Fig. 4).  This can 
certainly be calculated accurately, and integrated over various detectors to give bright 
or dark field images.  Figure 4 highlights the role of the detector in determining the 
form of the image, coherent or incoherent:  a small axial detector (equivalent by 
reciprocity to axial bright field imaging in conventional TEM) shows thickness 
fringes from a Si crystal, a clear signature of an interference phenomenon.  The same 
probe, with the same intensity distribution inside the crystal, gives a very different 
image on the annular detector.  This image looks incoherent in nature, showing an 
intensity that increases monotonically with thickness (initially at least), and at all 
thicknesses reveals the atomic structure with no contrast reversals or noticeable 
change in the form of the image.  How do we find a physical explanation for this? 

Multislice calculations are a popular approach to image simulation.  Provided the 
contribution of thermal diffuse scattering is taken account of they give good 
agreement with experiment and can conveniently handle defects (Anderson et al., 
1997; Hartel et al., 1996; Ishizuka, 2001; Loane et al., 1992; Mitsuishi et al., 2001; 
Nakamura et al., 1997).  Bloch wave simulations have also been carried out.(Amali 
and Rez, 1997)  They do not however answer our basic question: how one detector 
can see an apparently simple incoherent image when we know that the electron is 
undergoing strong dynamical diffraction within the crystal and exploring many 
neighboring columns.  Image simulations can confirm the observations in the 
microscope but cannot provide the physical insight we desire.   

-500Å -700Å -400Å -300Å -600Å 



Fig. 4.  Illustration of simultaneous coherent and incoherent imaging on the STEM using a small bright 
field detector and a large annular detector, respectively.  Plots show the very different transfer 
functions for the two detectors, the bright field detector showing contrast reversals and oscillations 
characteristic of coherent phase contrast imaging, the dark field detector showing a monotonic decrease 
in transfer with spatial frequency characteristic of incoherent imaging.  The images of a Si crystal in 
<110> orientation show also the very different behavior with specimen thickness.  Thickness fringes 
are seen in the coherent image whereas a monotonic increase in intensity with thickness is seen in the 
incoherent image, with a structure image of similar form at all thicknesses (given in nm).  Images 
recorded using a VG Microscopes HB501UX STEM at 100 kV with a probe size of ~ 0.22 nm. 

A Bloch wave analysis of the process is necessary to answer questions of this nature.  
Bloch waves are the quantum mechanical stationary states appropriate to a periodic 
system. In the tight binding approach of solid state physics Bloch waves are 
constructed from the orbitals of the free atoms.  The analogous basis states for 
electron microscopy are the orbitals of a free column, a two-dimensional set of states 
reflecting the fact that in a zone axis crystal the electron is fast along the beam 
direction and slow in the transverse direction.  Its energy in the forward direction is 
much higher than the variations in potential energy along the column, which it 
therefore interacts with only weakly.  In the transverse direction the energies are more 
comparable and strong interaction occurs.  The states take on the usual principle and 
angular momentum quantum numbers, 1s, 2s, 2p, etc, as shown schematically in Fig 5 
(Buxton et al., 1978).  The 1s states are the most tightly bound, as in the case of 
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atomic orbitals, and the most highly localized around the column.  This becomes 
significant when we assemble an array of columnar states to form a crystal.  As in 
solid state theory the inner orbitals are unaffected but the outer shells overlap with 
their neighbors, as shown schematically in Fig. 5. 

 

A plane wave is a quantum mechanical stationary state for an electron in free space, 
but not for an electron in a crystal.  Only stationary states have physical reality in the 
sense that an electron in a stationary state will remain in it until scattered out by some 
process.  In a crystal, Bloch states are the stationary states, and an electron will stay in 
some Bloch state until scattered out.  When a fast electron enters a crystal it has a 
certain probability of exciting various Bloch states, and it can be described as a 
superposition of all Bloch states with different probability amplitudes (excitation 
coefficients), see (Bird, 1989) for a review of the Bloch wave method.  The total 
energy of the electron is fixed, but from Fig. 5 it is seen that each Bloch state samples 
a different region of the atomic potential.  The kinetic energy of each Bloch state must 
therefore be different, so they must propagate with different wave vectors.  The 1s 
state is so localized that it samples the deepest region of the atomic potential well and 
it is the most accelerated by the atomic column.   

Which state gives the clearest image of the crystal?  There are two reasons to prefer 
1s states.  First, in a crystal we cannot expect to resolve structure below the size of a 
quantum state, so clearly the most accurate and direct image of a crystal would be 
given by the most localized states.  The 1s state represents the quantum mechanical 
limit for resolution in a crystal.  Second, states that overlap their neighbors will have a 
form that depends on the location of the neighbors, making the image non-local and 
more difficult to interpret.  In conventional high-resolution phase contrast imaging 1s 
states can be selected by choosing an appropriate specimen thickness.  At the entrance 
surface of the specimen all Bloch states are in phase and sum to the incident beam.  
As the wave function propagates through the crystal, it is the 1s states that first 
acquire a significant phase difference because their wave vector is the most changed.  
The extinction distance ξ is defined as the distance to acquire a phase change of 2π. 
At a thickness of ξ/4 the 1s states at the exit face have approximately a π/2 phase 
change compared to the other states.  In phase contrast microscopy, phase changes in 

Fig. 5.  Schematic showing some of 
the states for an isolated atomic 
column (top).  When assembled into a 
crystal, typically the localized 1s states 
do not overlap with their neighbors 
and are unchanged, but the less 
localized 2s and 2p states overlap 
strongly and form bands. 



the exit face wave function are turned into amplitude variations in the image.  At this 
particular thickness therefore the 1s states are the source of the image contrast and we 
see a clear structure image (de Beeck and Van Dyck, 1996).  However, with 
increasing thickness the 1s state phase continues to change.  At a thickness of ξ/2 its 
phase has advanced by π and it will no longer contribute to the phase contrast image.  
At 3ξ/4 the phase change is 3π/2 and the image contrast reverses.  The complicating 
factor is that by such thicknesses other states have acquired significant phases of their 
own and the phase of the exit face wave function is no longer dominated by 1s states.  
Phase can no longer be simply related to the positions of the atomic columns, and the 
image loses its simple intuitive nature.  The thickness range of an interpretable 
structure image is therefore rather small, 5 – 10 nm, and the optimum thickness is 
different for columns of different atomic number.  In many cases only two states 
dominate, 1s and 2s, giving an image that is periodic in specimen thickness 
(Fujimoto, 1978; Kambe, 1982). 

In Z-contrast microscopy we use the detector to give 1s state imaging (Nellist and 
Pennycook, 2000; Pennycook and Nellist, 1999).  Because the 1s states are the most 
highly localized states in real space, they are the broadest states in reciprocal space.  
This is quite different from imaging the phase of the entire exit face wave function.  
The high angle detector effectively imposes a small coherence envelope around the 
column, as shown in Fig. 1b.  Whenever the 1s state dominates the wave function in 
this region, ie., at thicknesses of ξ/4, 3ξ/4, 5ξ/4, etc, we have a strong intensity on the 
detector.  We are insensitive to phase changes outside the coherence envelope and see 
only the 1s state structure image.   

There are two key differences from a phase contrast image, first, that filtering occurs 
at multiple thicknesses, and second, the image intensity does not reverse contrast, but 
oscillates with thickness according to the extinction length.  But why is this not 
apparent in Fig. 4?  The reason the intensity does not appear to oscillate in practice is 
because the intensity reaching the detector is actually dominated by thermal diffuse 
scattering, which is not included so far in our Bloch state description.  It is an accident 
that at detector angles needed to give good 1s state filtering the contribution of 
thermal diffuse scattering also becomes dominant.  Quantum mechanically, thermal 
diffuse scattering involves scattering by phonons.  Phonon wave vectors are 
significant in magnitude but have random phases because they are thermally excited.  
Each scattering event leads to a scattered wave with a slightly different wave vector 
and phase.  In a diffraction pattern we see sharp Bragg spots replaced with a diffuse 
background.  It is the sum of many such random scattering events that gives the 
diffuse background which is therefore effectively incoherent with the Bloch states.  
We consider the phonon-scattered electron to be no longer a part of the oscillating 
coherent wave field of our propagating electron.  In other words, the 1s state puts the 
electron wave function onto the detector, but it is phonon scattering that keeps it 
there.  The result of many such scattering events is that a fraction of the 1s state 
intensity is lost from each thickness and remains on the detector.  We say the 1s state 
is “absorbed”, since its intensity decreases, but the “absorption”, at least a large part 



of it, reaches our detector.  The 1s state decays with increasing thickness and our 
detected signal increases.   

This explains the thickness dependence seen in Fig. 4.  It also explains why we see a 
simple 1s-like image at any thickness even when the phase contrast image sees a 
complex interference between several states.  The combination of detector filtering 
and diffuse scattering has eliminated most of the obvious effects of dynamical 
diffraction.  We have the most local and direct image possible for a crystal, over a 
large range of thickness, with Z-contrast to help distinguish columns of different 
composition. 

But can we really consider the image to be formed column-by-column as the probe 
scans?  To answer this we need to show that the image is given to a good 
approximation by Eqn. 1, a convolution of the probe intensity profile with the 1s 
states in the object.  If this is the case, then we just have to form a probe which is 
small enough to select the 1s state on a single column, as shown in Fig 1b.  Since the 
1s states are independent of their neighbors, then we can indeed consider the image to 
come from channeling along single columns even if we know that the probe explores 
more than just a single column as it undergoes dynamical diffraction.  To show this 
requires a mathematical theory of image formation and some explicit calculations, 
which we turn to in the next section.   

B. Spectroscopy 

Can we really expect EELS to be achievable from a single column?  We must 
remember that the total intensity in the detector plane is equal to the total incident 
intensity, by conservation of energy.  In thin crystals the intensity at the outer edge of 
the annular detector is negligible due to the fall off in atomic scattering factor 
(although in crystals several extinction distances thick multiple elastic scattering 
broadens the distribution and this may no longer be true).  So in the thin crystals used 
for atomic resolution imaging, the intensity on the annular detector and the intensity 
through the hole must sum to the total incident beam intensity.  If the intensity 
reaching the detector is effectively generated column-by-column, then so is the 
intensity passing through the hole.  Single column EELS should indeed be possible 
provided the acceptance aperture into the spectrometer is sufficiently large, and there 
are now many experimental verifications that atomic resolution spectroscopy can be 
achieved this way (Batson, 1993; Browning et al., 1993a; Dickey et al., 1997; 
Duscher et al., 1998; Wallis et al., 1997). 

But there are additional quantum mechanical considerations for EELS.  In particular 
there is a long history of discussion on delocalization, which is the possibility of 
exciting a transition in an atom without the beam necessarily passing through it.  The 
origin of this concept appears to lie in a classical view of the excitation process, 
whereby a fast electron passes close to an atomic electron which is excited by the 
long-range Coulomb field, as shown schematically in Fig. 6a. 



 

Fig. 6.  (a) Classical view of atomic excitation by a passing fast electron.  (b) Quantum mechanical 
view.  (c) Plot of the full width half maximum of the spatial response compared to the size of the 
orbital, showing the quantum mechanical limit to spatial resolution in EELS is the size of the orbital. 

Conservation of energy and momentum shows that there is a minimum momentum 
transfer qmin associated with a transfer of energy ΔE given by 

  

  

qmin = !E /!v .  It is 
customary to define the impact parameter as 

  

  

b
max

=1 /q
min

= !v /!E  and associate this 
with the spatial extent of the excitation, ie., the localization.  Since this is the 
maximum impact parameter, one can also perform a weighted average over the cross 
sections for different scattering angles which gives a much smaller estimate 
(Pennycook, 1988). All classical calculations predict that the resolution (impact 
parameter) is degraded in direct proportion to beam velocity.  This is the semiclassical 
picture of the scattering, in which an electron is treated as a classical point charge, and 
therefore we can define a distance to it, an impact parameter b.   

It is surprising how different an answer we obtain with a quantum mechanical 
calculation.  Instead of a passing point charge we imagine now a very fine probe as 
indicated in Fig. 6b.  Now we calculate the transition rate induced by the probe for an 
electron initially in an inner shell atomic orbital into an unbound state.  The root of 
the problem with the classical view is that the impact parameter is not an observable.  
We cannot think of independent trajectories of point charges, but must treat the 
problem by a fully quantum mechanical theory.  As with the image, the answer 
depends on how we look at the atom, the nature of the detector.  We must again first 
define our detector geometry, and then calculate the detected intensity as a probe is 
scanned across an atom.  That will give us the spatial resolution.   

With a large detector, calculations show that the image of an atom formed from 
electrons excited from an inner shell is given by a convolution of an intrinsic object 
function and the probe intensity profile, as in Eqn. 1 (Ritchie and Howie, 1988; Rose, 
1976).  The full width half maximum (FWHM) of the intrinsic object function 
depends only on transition matrix elements.  Impact parameters are not part of this 
description, replaced by calculations involving matrix elements.  The results are 
shown in Fig 6c, and are much smaller than classical estimates (Rafferty and 
Pennycook, 1999).  The intrinsic object function is very comparable to the size of the 
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inner shell orbital.  The inelastic image is given by the convolution of this with our 
incident probe, ie, some overlap is necessary between the atomic orbital and our 
incident probe, as depicted in Fig. 6b.  This is entirely in accord with the quantum 
mechanical viewpoint.  There is no delocalization, unless we define it just as the 
spatial extent of the inner shell orbital, or the extent of the probe.  Some overlap of the 
fast electron wave function and the inner shell wave function is necessary or the 
transition rate is zero.   

One further point of confusion exists in the literature, and that concerns earlier 
quantum mechanical calculations which were based on the dipole approximation.  In 
the present case we have a large detector, and we want the response at large distance.  
Therefore the dipole approximation, which replaces eiq⋅r by 1 + iq.r is invalid (Essex 
et al., 1999; Rafferty and Pennycook, 1999).  
Making this approximation gives large tails on 
the response and a false indication of 
delocalization, as shown in Fig. 7.  Finally, the 
full calculation shows practically no dependence 
of the intrinsic resolution on beam energy 
(Rafferty and Pennycook, 1999).  This again is 
in complete accord with the quantum 
mechanical view of the process as an overlap 
and completely opposite to the classical view 
which predicts a velocity dependent 
delocalization.   

With no delocalization the resolution of EELS 
is the same as the resolution of the Z-contrast 
image, as long as we do indeed maintain a large 
detector angle.  If we can show that the image in 
a zone axis crystal is indeed in the form of a 
convolution then the same is true for the EELS and we can truly view the microscope 
as providing column-by-column imaging and analysis as depicted schematically in 
Fig 1b.  Remarkably, the simple schematic turns out to be more than just an idealized 
picture, but to be quantum mechanically correct! 

Another area where quantum mechanics is essential concerns the interpretation of 
EELS data.  The absorption threshold is the lowest energy necessary to excite an inner 
shell electron into an empty final state.  In semiconductors and insulators it is 
common to think of this as excitation into the conduction band, and in this view the 
intensity in the near edge region should map out the density of states in the 
conduction band.  In fact this is not usually the case.  The conduction band is defined 
as the energy band structure for an electron brought into a solid from infinity.  Our 
electron is already in the solid; it is just raised in energy.  It therefore is placed into an 
empty final state at a position where there is now a hole in the inner shell (see Fig. 8).  
As you might imagine there is a strong attraction between the core hole and the 
excited electron, which has very little excess kinetic energy near threshold.  It 
becomes bound to the hole, a core exciton.  This shifts the threshold down in energy 
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Fig. 7.  Intrinsic object function for 
excitation of an O K shell electron by a 
300 kV probe, calculated with and 
without the dipole approximation. 



(by the exciton binding energy) but that is not all, the density of states it sees is quite 
different from that seen without the hole.  The positive hole provides a strong 
perturbation to the solid. It is almost equivalent to replacing the excited atom by one 
with an additional charge on the nucleus, which clearly will result in a quite different 
band structure.   

This is in fact turns out to be an excellent way to model the core hole.  Since the inner 
shell is highly localized, it makes little difference if the hole is in the orbital or a fixed 
point charge on the nucleus, which is the so-called Z+1 approximation.  Figure 9 
shows experimental data for the O K and Si L2-3 edges in amorphous SiO2 (Duscher et 
al., 2001).  The dashed line shows calculated EELS spectra assuming no electron-hole 
interactions.  In this case the spectrum should just reflect the conduction band density 
of states.  Furthermore, the position of the core levels and the valence and conduction 
band levels are well established from photoemission experiments (Pantelides, 1975).  
Therefore we know where the threshold ought to be if there were no excitonic effects.  
This is where the dashed line is placed, and clearly it is far from the experimental 
absorption edge.  This is unequivocal evidence that electron-hole interactions are 
strong, that several eV shifts in edge onsets can occur.  It is not surprising then that 
large changes also occur in the edge shapes, ie., the density of states is also strongly 
perturbed.  The solid line is the result of a Z+1 calculation.  There is no accurate 
method to calculate the binding energy as it is not a simple electron-hole binding 
energy but is a many-body effect.  However, the shape is well predicted by the 
calculation, and we simply match the threshold to the observed value to obtain 
excellent agreement.   
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Fig. 8.  Schematic of the energy band 
structure of a semiconductor or 
insulator as seen by an electron 
coming into the conduction band (a) 
from far away and (b) from an inner 
shell.  The presence of the core hole 
in (b) shifts and distorts the band 
structure significantly. 



Fig. 9.  EELS fine structure calculations for the Si-L2,3 edge (left) and the O-K edge (right) assuming 
no electron hole interactions (dashed curve) and using the Z+1 approximation to account for electron-
hole interactions (solid black curve).  Experimental data is shown in grey. 

It is also important to realize that this core exciton is quite different in nature to a 
shallow impurity, where the fields of the impurity are extended and the bands change 
gradually in a smooth way into the impurity site.  This case can be treated by an 
effective mass approximation but it is inappropriate for the core exciton which is a 
strong, highly local perturbation.  The bands are quite different in the region of the 
core hole (Buczko et al., 2000a). 

Theory of Image Formation in the STEM 
The Bloch wave description of STEM imaging has been described in detail in recent 
reviews (Nellist and Pennycook, 2000; Pennycook and Nellist, 1999), so we will only 
highlight here the key results.  The free space probe given in Eqn. 2 is a coherent 
superposition of plane waves eik⋅r.  As discussed above, plane waves are stationary 
states in free space but not for a crystal which is periodic.  Stationary states for the 
crystal must have a form b(r) eik⋅r where the Bloch function b(r) shows the crystal 
periodicity.  Each component plane wave in the free space probe is expanded into a 
complete set of Bloch states.  For a zone axis crystal we resolve the position and 
momentum vectors perpendicular and parallel to the beam direction, r = (R,z) and k = 
(K,kz) and assume no interaction with the crystal periodicity along the beam direction 
(ie., we ignore higher order Laue zone interactions).  The Bloch states are formed in 
the transverse plane, and take the form b(R) eiK⋅R eikzz, stationary states in the 
transverse plane, propagating in the beam direction. First we assume only coherent 
scattering with no absorption. This will show the origin of the image contrast, the 
detector filtering action, the transfer function and the resolution limit.  As before we 
use R and K to denote positions in the specimen and transverse wave vector in the 
probe, respectively, bj(K,R) is the Bloch function for state j, with excitation εj(K), and 
wave vector kz

j along the column.  The probe intensity about a scan coordinate R0 at a 
depth z is then given by 

 P(R-R0,z) = ∫  A(K) eiγ(K) 
j

! εj(K) bj(K,R) eiK⋅(R-R0) eikz
j(K)zdK. (4)  
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The specimen is included in this expression since it determines the Bloch states.  
Taking the intensity and Fourier transforming with respect to Kf a transverse wave 
vector in the detector plane, and with respect to probe coordinate R0 gives the 
component of the image intensity at a spatial frequency ρ   (Nellist and Pennycook, 
1999). 

 I(ρ,z) = ∫  D(Kf)dKf ∫  A(K) eiγ(K) A*(K+ρ) e-iγ(K+ρ) 
j,k

! εj(K)εk*(K+ρ)bKf
j(K)bKf

k*(K)  

 × ei[kz
j(K)-kz

k(K)]zdK, (5)  

where bKf
j(K) represents the Kf Fourier component of the Bloch state j.  The integral 

over the detector can now be performed immediately to see which Bloch states give 
important contributions to the image intensity.  The detector sum is given by 

 Cjk(K) = ∫  D(Kf) bKf
j(K)bKf

k*(K) dKf. (6) 

At high thickness the cross terms Cjk become insignificant compared to the terms 
involving only a single Bloch state, Cjj.  Table 1 shows Cjj values for GaAs in the 
〈110〉 orientation (Rafferty et al., 2001).  Comparison of the excitations with the Cjj 
values shows the filtering effect of the detector.  In the case of the In column this is 
quite dramatic: the 1s state has much lower excitation than the 2s state but about an 
order of magnitude greater contribution to the detector sum at a detector angle of 26 
mrad.  The filtering is even stronger at the higher detector angle, where the 1s states 
are two orders of magnitude greater than any other state reaching the detector.  This is 
a significantly stronger filtering effect than found in the original Bloch wave analysis 
(Pennycook and Jesson, 1990; Pennycook and Jesson, 1991; Pennycook and Jesson, 
1992), where it was assumed that the detected intensity would be proportional to the 
intensity at the atom sites.  Although the incoherent imaging was correctly attributed 
to the dominance of 1s Bloch states, by now including the detector explicitly we find 
an even more complete filtering effect.   

We also find that the detected intensity is close to that expected on the basis of 
Rutherford scattering from a single atom.  Table 2 shows the intensity on the group III 
and group V columns for various combinations of states.  In all cases the ratio is close 
to the Z2 value for Rutherford scattering, even though here it is calculated from Bloch 
states in a purely dynamical theory. 

 

 

 

 

 



State Excitation Cjj 
26 mrad                      60 mrad 

0 (In 1s) 0.193529 0.156097 7.001×10-3 

1 (As 1s) 0.244683 0.082966 2.718×10-3 

2 0.115214 0.023793 2.710×10-5 

3 2.0×10-13 0.022859 3.054×10-5 

4 (In 2s) 0.80726 0.022332 5.230×10-5 

5 9.2×10-13 3.742×10-3 3.780×10-6 

6 0.417664 9.575×10-3 1.180×10-5 

7 0.229465 0.013675 2.630×10-5 

8 8.2×10-13 8.277×10-3 1.028×10-5 

9 0.084823 0.011075 1.752×10-5 

Table 1.  Comparison of the excitation and the detector sum Cjj for Bloch states in GaAs <110>.  The 
In 1s state dominates the detector sum even though In 2s state is much more highly excited. 

III/V State(s) III site V site n in Zn 

InAs 

In 1s; As 1s 

In 1s, 2s; As 1s 

all 

1.08 

1.04 

1.09 

.504 

.476 

.508 

1.93 

1.97 

1.93 

 

GaAs 
 
 

Ga 1s; As 1s 

Ga 1s,2s; As 1s,2s 

all 

.441 

.430 

.4297 

.504 

.490 

.4928 

2.13 

2.1 

2.19 

Table 2.  Comparison of the detected intensity at the group III and group V sites in GaAs and InAs 
showing a ratio close to that expected for Rutherford scattering from single atoms. 

 

Because the image is dominated by the 1s states, Eqn. 5 can be simplified 
substantially.  First we remove all the other states.  Second, the 1s states do not 
overlap appreciably at typical crystal spacings, and are therefore independent of the 
incident wave-vector K (non-dispersive) except for their excitation coefficients.  So 
the 1s states can be removed from the integral over K, and the detector sum 
approximated by Z2.  Equation 5 becomes 



 I(ρ) 

  

∝  Z2 ∫   A(K) eiγ(K) A*(K+ρ) e-iγ(K+ρ)  ε1s(K)ε1s*(K+ρ) dK. (8)  

We see first that image contrast at spatial frequency ρ   requires overlap of the two 
aperture functions, ie overlapping convergent beam discs as shown in Fig. 10.  The 
resolution limit is therefore when the two discs just overlap, ie the aperture diameter, 
twice the resolution of an axial bright field image which is formed by interference 
between the direct and scattered beams.  In the STEM, axial bright field images can 
be formed with a small axial detector.  For the case shown in Fig. 10 no overlapping 
discs fall on such a detector so there is no lattice image. 

Second, the only material 
parameters left in the integral are 
the Bloch state excitations and the 
scattering power of each column, 
Z2.  If we assume for the moment 
that the objective aperture is 
small, the 1s state excitation is 
then approximately constant 
across the aperture, and the 
integral is just the autocorrelation 
of the aperture functions.  
Transforming back to real space, 
the integral becomes the probe 
intensity profile, which is now 
convoluted with the scattering 
power of the object.  We have 
incoherent imaging as in Eqn. 1, 
with an object function that is just 
Z2 at each atom column position. 

The excitation of the Bloch state is actually its Fourier transform (the excitation for a 
plane wave incident at K is the K component of the Bloch state).  So the image in real 
space is better described as a convolution of the Z2 scattering power, the free space 
probe, and the 1s Bloch state:   

 I(R) = O(R) * P 
2
(R) * b1s 2(R). (9)  

We see again that the quantum mechanical limit to resolution in the crystal is the 1s 
Bloch state.  In the uncorrected STEMs of today, probe sizes are ~ 1.4 Å, while 1s 
Bloch states are ~ 0.6 – 0.8 Å, so the resolution is limited predominantly by the probe.  
With the advent of aberration correctors probe sizes will decrease significantly, and 
the image may soon become limited by the size of the 1s Bloch states (Pennycook et 
al., 2000).  It is worth noting that the width of the 1s Bloch states becomes narrower 
at higher accelerating voltages. 

Our goal here is primarily to understand the physics of the imaging process as 
opposed to an accurate image simulation.  Nevertheless, Eqn. 9 often gives a 

ADF detector 
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objective aperture 

objective lens 

focused probe at 
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bright field detector 
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ρ  

Fig. 10.  Schematic of image formation in the STEM. 



simulation that agrees quite well with experiment.  As an example, Fig. 11 compares 
the image of an inversion domain boundary in AlN with a simulation using the 
convolution method (Yan et al., 1999).  The agreement is quite good, reproducing the 
zig-zag nature of the experimental data.  If we do not include the oxygen columns in 
the simulation we do not match the data.  This suggests that at least in the presence of 
relatively light Al columns (Z = 13), the image can detect O columns (Z = 8).   

Fig. 11.  (a) Z-contrast image of an antiphase boundary in AlN.  The image reveals the different atomic 
spacing at the defect compared to the bulk, and suggests the structure model (b).  Simulation by 
convolution, using a Z2 weighting for each column, gives the simulated image (c).  If the oxygen 
columns are removed from the simulation it no longer matches the image (d). 

There are many situations where we cannot expect the simple convolution to work.  
There is a small background intensity in the image due to all other Bloch states, which 
clearly is not included in the 1s state model.  This background will also be non-local, 
so may vary across an interface.  Accurate simulations are necessary for such effects 
to be quantified.  Also we do not expect to accurately fit the thickness dependence, 
although analytical approaches do appear rather promising.  Neither can we simulate 
the effect of defects, which introduce transitions into and out of the 1s states (ie 
diffraction contrast effects).  In many cases however, such as the example of Fig. 11, 
regarding the image as a simple convolution can give significant insights into a 
material’s structure, a first order structure determination which can form the basis for 
other methods of structure refinement, as shown next. 

3.  Examples of Structure Determination by Z-Contrast Imaging 
 
Al-Co-Ni Decagonal Quasicrystal 

Although it is now 15 years since the key question “Where Are the Atoms” was posed 
(Bak, 1986), many issues remain unanswered, including arguably the most 
fundamental question of all, the real atomic origin of the quasiperiodic tiling.  As an 
example of how Z-contrast imaging has begun to produce some answers to this 
question, we will take the case of the Ni-rich decagonal quasicrystal Al72Ni20Co8, the 
most perfect quasicrystal known.  It is periodic in one direction and has a 
quasiperiodic arrangement of 2-nm diameter clusters in the perpendicular plane, 



making it ideal for electron microscopy studies.  Z-contrast images were the first to 
reveal clearly the structure of a 2-nm cluster, although the structure has evolved 
somewhat since the earliest studies (Abe et al., 2000; Steinhardt et al., 1998; Yan et 
al., 1998; Yan and Pennycook, 2001).   

Figure 12 shows how the transition metal (TM) sites are clearly located by the 
brightest features in the image, while the less intense peaks give a good indication of 
the location of the Al columns.  This high-resolution image revealed the presence of 
closely spaced pairs of TM columns around the 2nm ring, with similarly spaced pairs 
in the central ring.  It is clear from this image that the 5-fold symmetry is broken in 
the central ring.  Figure 12b shows subunits of the decagon identical to those used by 
Gummelt to produce her aperiodic prototile (Gummelt, 1996).  She showed that 
allowing only similar shapes to overlap (as in (c) and (d)) gives sufficient constraint 
that perfect quasiperiodic order results.  Thus we can regard the non-symmetric atom 
positions in the central ring as the atomic origin of quasiperiodic tiling.  



 

 

Fig. 12.  (a) Z-contrast image of a 2-nm cluster in an Al-Co-Ni decagonal quasicrystal where transition 
metal sites (large circles) are distinguished from Al sites (small circles) purely on the basis of intensity.  
(b) Structure deduced from (a) with superimposed subtiles used by Gummelt to break decagonal 
symmetry and induce quasiperiodic tiling.  (c) and (d) show the two types of allowed overlaps, with 
arrows marking positions where atoms of one cluster are not correct for the other.  Following the 
Gummelt rules, the clusters can be arranged to cover the experimental image (e) 

The question remains; what is the reason for the broken symmetry?  This is a good 
example where an initial structure model obtained from a Z-contrast image was used 
as input for structure refinement through first-principles calculations.  A set of three 
trial clusters were used to determine if chemical ordering in the central ring provides a 
sufficient driving force to break the symmetry and cause the quasiperiodic tiling.  The 
three structures are shown in Fig. 13 prior to relaxation and all contain the same 

a b 

d c 



number of atoms, with the central ring containing 50% TM and 50% Al, in (a) mixed 
columns, (b) ordered columns with 5-fold symmetry, and (c) ordered columns with 
broken symmetry as observed.  The ordered structure (b) has a total energy 7 eV 
below structure (a) while structure (c) reduces the energy a further 5 eV upon 
relaxation, adopting the final form shown in fig. 12 (Yan and Pennycook, 2001). 

 
Figure 13.  Initial model clusters used for first-principles density functional calculations, with 
(a) mixed Al and TM columns in the central ring, (b) ordered central ring and (c) ordered 
columns with broken symmetry. 
 
Grain Boundaries in Perovskites and Related Structures 

The electrical activity of grain boundaries is responsible for numerous effects in 
perovskite-based oxide systems, including the nonlinear I-V characteristics useful for 
capacitors and varistors, the poor critical currents across grain boundaries in the oxide 
superconductors, the high field colossal magneto-resistance in the lanthanum 
manganites, and doubtless many other properties, both desired and undesired, in 
materials with related structures.  SrTiO3 represents a model system for understanding 
the atomic origin of these grain boundary phenomena.  The macroscopic electrical 
properties of SrTiO3 are usually explained phenomenologically in terms of double 
Schottky barriers that are assumed to originate from charged grain boundary planes 
and the compensating space charge in the adjacent depletion layers (Vollman and 
Waser, 1994).  The net result is an electrostatic potential (band bending) that opposes 
the passage of free carriers through the grain boundary.  However, for 
phenomenological modeling of these effects, a grain boundary charge is usually 
assumed as an input, and the microscopic origin of this phenomenon has remained 
elusive.   



Grain boundaries comprise an array of dislocation cores, their spacing and Burgers 
vector determining the misorientation between the two grains.  Figure 14 shows the 
alternating Sr and Ti cores that form a 36˚ symmetric {310} [001] tilt grain boundary 
in SrTiO3.  Each core contains a pair of like-ion columns in the center.  All cores in 
both asymmetric and symmetric grain boundaries show similar features (Fig. 14b).  If 
the pair of columns in the core is fully occupied, as in the bulk, the boundary is non-
stoichiometric.  If, however, they are only half-occupied (e.g., every other site is 
occupied), the boundary is stoichiometric.  This half-occupation has been described as 
“reconstruction” (Browning et al., 1995; McGibbon et al., 1996).  This cannot be 
determined simply from the image intensity since columns in the core of a boundary 
are strained, which can increase or decrease the image intensity depending on the 
detector angle.  The rational for preferring stoichiometric boundaries was that the 
distance between the pair of columns is usually smaller than in the bulk, which would 
cause ionic repulsion. 

Fig. 14.  (a) Z-contrast image of a 36˚ grain boundary in SrTiO3 showing alternating pentagonal Sr and 
Ti structural units or dislocation cores.  (b) all symmetric and asymmetric [001] tilt boundaries are 
comprised of specific sequences of these four basic core structures.  (c) EELS of a low angle grain 
boundary shows Ti-O ratio is enhanced at the boundary compared to the bulk.  (d)  Calculation of 
charge density in the conduction band for a Ti-core structure in which one column has excess Ti and 
the other is stoichiometric. 

EELS, however, provides definitive evidence of non-stoichiometry (Kim et al., 2001).  
Figure 14(c) shows the Ti L2,3 and O K EELS spectra taken in the bulk and at an 
individual dislocation core in a low-angle SrTiO3 grain boundary.  Normalizing the 
two spectra to the Ti L-edge continuum it is clear that the Ti-O ratio in the boundary 
is higher than the bulk. In order to explore the relative stability of stoichiometric and 
non-stoichiometric structures, we again turn to total-energy calculations.  As a model 
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structure, we used the 53˚ symmetric {210} [001] tilt grain boundary for which 
supercells can be constructed from either Sr or Ti units.  Theory confirmed that non-
stoichiometry was energetically favorable, but found a difference between the two 
cores.  The Sr core preferred half columns of Sr with O vacancies in adjacent 
columns, ie oxygen deficiency.  The Ti core preferred full Ti columns, ie excess metal 
compared to the stoichiometric structure. 

Electronically, the result is the same.  The cations have unbound electrons which must 
go into the conduction band.  Figure 14(d) shows the spatial distribution of the 
electrons in the conduction bands for a structure in which one of the two core columns 
is stoichiometric and the other has excess Ti.  It is clear that the excess electrons are 
localized over the excess Ti atoms, maintaining charge neutrality at that site.  The 
calculation of course assumes a pure material, in which there is no band bending and 
the Fermi level lies near the conduction band.  For a boundary surrounded by p-type 
bulk, these electrons will move off the Ti atoms and annihilate nearby holes.  The 
grain boundary becomes charged and sets up a space-charge region on both sides. 
Thus we have explained the origin of the grain boundary charge that was postulated 
from electrical measurements.  It arises from the non-stoichiometry ofdislocation 
cores in the perovskite structure.   

Similar effects can explain the dramatic effect of grain boundaries in the high 
temperature superconductors.  It has been known from soon after their discovery that 
even a single grain boundary can reduce the critical current by up to four orders of 
magnitude (Dimos et al., 1990; Dimos et al., 1988; Ivanov et al., 1991).  Furthermore, 
the reduction is exponential with grain boundary misorientation.  The band-bending 
model can quantitatively explain this phenomenon.  YBa2Cu3O7-x (YBCO) is a hole-
doped superconductor with about one hole per unit cell for optimum doping at x close 
to zero.  It has a structure closely related to the perovskite structure, and images show 
that grain boundaries are made up of similar structural units as in SrTiO3.  Figure 15 
shows an example of a 30˚ grain boundary in YBCO in which the sequence of units is 
precisely as expected by direct analogy with SrTiO3 (Browning et al., 1998). 

 

Fig. 15.  Z-contrast image (a) and maximum entropy object (b) of a 30˚ grain boundary in YBCO, 
showing the same units and sequence as SrTiO3. 



Furthermore, recent EELS measurements show clear evidence for band bending 
effects around isolated dislocation cores in a low angle grain boundary.  This material 
is extremely sensitive to oxygen content, changing from superconducting at x = 0 to 
insulating at x = 1.  It is not possible to measure such small changes in stoichiometry 
with sufficient accuracy to determine local superconducting properties, but 
fortunately, in YBCO the presence of holes in the lower Hubbard band is directly 
observable as a pre-edge feature before the main oxygen K-edge.  This feature does 
provide a direct measure of local hole concentration (Browning et al., 1993b; 
Browning et al., 1992).  Figure 16 compares oxygen K-edge spectra obtained from a 
core, between two cores, and far away from the cores, confirming that there is strong 
hole depletion in the vicinity of the boundary, strongest at the dislocation cores 
themselves.  

Fig. 16.  EELS spectra obtained from an 8˚ grain boundary in YBCO showing strong hole depletion as 
the probe is moved into a dislocation core (courtesy G. Duscher). 

Given the similarity in structure to SrTiO3, if we assume that there is strong non-
stoichiometry in all YBCO grain boundaries we can explain the observed dependence 
of critical currents on misorientation. Since the grain boundary structures are fixed by 
geometry, we know the variation in the density of structural units with grain boundary 
misorientation.  We assume for this purpose that the boundaries are all of asymmetric 
type, since it is well known that the boundaries are wavy in reality and asymmetric 
boundaries are far more likely than symmetric boundaries.  Indeed, it is difficult to 
find any symmetric segments at all.  Now viewing the boundary as a pnp layer, we 
can calculate the width Δ of the depleted p regions surrounding the boundary as Δ = 
ϕ/n where ϕ is the grain boundary charge and n is the bulk charge of one hole per unit 
cell.  We assume two excess electrons per dislocation core, which gives a width that 
increases approximately linearly across the entire range of grain boundary 
misorientations, as shown in Fig. 17.   
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The supercurrent can only pass through this non-superconducting region by some 
form of tunneling, and must therefore show an exponential drop given by Jc ∝ exp( – 
2 κ Δ), where κ = 7.7 nm-1 is a decay constant determined from scanning tunneling 
spectroscopy (Halbritter, 1992; Halbritter, 1993).  The predicted decrease in critical 
current is shown in Fig. 18 to be an excellent match to the experimental data of 
(Hilgenkamp and Mannhart, 1998). While there are many other possible influences of 
grain boundaries, including strain (Chisholm and Pennycook, 1991; Gurevich and 
Pashitskii, 1998), and the d-wave nature of the order parameter (Hilgenkamp et al., 
1996), none can explain the exponential drop across the entire misorientation range.  
However, it should be noted that this model cannot be expected to fit quantitatively at 
low grain boundary angles where the dislocation cores become widely separated and 
the assumption of a planar Josephson junction no longer applies.   

The Si/SiO2 Interface 

The incoherent Z-contrast image is especially useful at an amorphous-crystal interface 
because the last plane of the Si is directly visible.  This is a timely advantage as 
technology pushes to ever thinner gate dielectrics and “the end of the roadmap” 
approaches (Muller et al., 1999).  In conventional high-resolution electron microscopy 
coherent interference blurs the interface structure over several monolayers and leads 
to a speckle pattern in the amorphous SiO2.  The Z-contrast image provides a direct 
qualitative determination of interface abruptness, as shown in Fig. 19(a).  The 
intensity of the last Si column is much less than in bulk, which is due to oxide 
protrusions into the Si.  The structural width of the interface is about one unit cell, ~ 
0.5 nm.  Clearly, to be more quantitative about this is difficult as the 1s Bloch states 
do not exist in the amorphous material.  This is a situation where full multislice image 
simulations from different interface structures may give more insight.  The band of 
bright contrast before the interface is due to strains in the Si induced by the oxide.  
The mean square atomic displacement of the strain can be determined by comparing 

Fig. 17.  Width of grain boundary depletion 
zone with misorientation calculated 
assuming two electrons per structural unit. 

Fig. 18.  Exponential drop in grain boundary 
critical current predicted by the structural 
unit model compared to the influence of 
strain and the d-wave nature of the order 
parameter.  Experimental data are from 
Hilgenkamp and Mannhart, 1998. 
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images taken at different detector angles (Pennycook and Nellist, 1999).  For thermal 
oxides the results are always of the order 0.01 nm at ~ 1nm back from the interface, 
independent on whether the geometric interface is rough or smooth.  These strains are 
therefore intrinsic to the Si-SiO2 interface, and arise from the large local 
displacements induced by the different Si-O configurations bonded to the Si crystal.  
The strains are random because the oxide comprises an intimate mixture of different 
bonding configurations, as found in theoretical modeling (Buczko et al., 2000b). 

The EELS profile in Fig. 19 shows that the electronic width of the interface is larger 
than the structural width.  The full SiO2 bandgap is not seen until ~ 0.5 nm past the 
interface plane.  In the Si the edge is at ~ 100 eV, while at the interface a quite 
different form of curve is observed that is not just a linear combination of Si and SiO2.  
Theoretical studies showed this to be characteristic of suboxide bonding, as shown in 
Fig. 19(b) (Buczko et al., 2000a; Neaton et al., 2000).  Therefore the total interface 
width is approaching 1 nm, with roughly equal contributions from roughness and 
band tails. 

 

Fig. 19.  (a) Z-contrast image (top) of an irradiated and annealed Si/SiO2 interface showing the position 
of a line scan for EELS.  The Z-contrast intensity recorded during the line scan (center) shows the 
probe position of each EELS spectrum.  Three representative Si L2,3 spectra are shown, from the Si 
(black line), the interface (grey line) and stoichiometric SiO2 (dashed line).  Shaded region on the 
interface spectrum indicates suboxide bonding consistent withe theoretical calculations (b).  The 
spectra are calculated with the Z+1 approximation for core excitons and positioned according to XPS 
data.  Spectra from the abrupt interface (left) show higher edge onsets than those from an interface with 
suboxide bonds. (Data courtesy G. Duscher) 
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4.  Practical Aspects of Z-contrast Imaging 
Now that field-emission TEM columns are available with STEM systems capable of 
resolving in the range of 1.4 Å, these techniques are likely to become more widely 
applied (James and Browning, 1999; James et al., 1998).  Here we discuss some of the 
practical issues that need to be taken into account for successful imaging.   

Firstly, sample preparation requirements are a little different from conventional TEM.  
Although Z-contrast imaging does not have the thickness limitation of conventional 
high-resolution imaging, it is more sensitive to surface damage or amorphous layers 
produced for example by ion milling.  Such layers scatter the beam in random ways 
leading to fluctuations in the intensity from otherwise identical columns which appear 
like image noise.  Thicker amorphous layers can lead to substantial broadening of the 
probe before it reaches the crystal. In extreme cases this can make it impossible to 
achieve atomic resolution. 

Secondly, because of the lack of dynamical thickness oscillations it is often tempting 
to try to image regions that are quite thick.  Indeed it is not easy to judge thickness 
based on the image alone.  However, contrast reversals can occur due to multiple 
elastic scattering, independent of the channeling conditions.  A high-Z material is a 
more efficient scatterer.  In thin specimens, it scatters the most to the high angle 
detector, and is seen brightest in the image. With increasing thickness it remains the 
most efficient scatterer, so will be the first to scatter to angles greater than the outer 
angle of the annular detector.  In this case a high-Z material can appear less bright 
than a material of lower Z, both on and off a zone axis.  Usually, such thicknesses are 
too large for good atomic-resolution imaging but the effect can be confusing when 
searching the specimen for suitable areas to study. 

There are many other differences from conventional TEM, for example the sensitivity 
and effects of sample tilt, drift, contamination and beam damage.  Contamination 
tends to be more apparent with a small probe, which gathers mobile carbon to it and 
then polymerizes it, so obliterating the image and degrading the resolution.  Plasma 
cleaning is usually the answer.  Beam damage is often thought to be more severe, but 
in practice many effects are dependent more on total current than on current density, 
and the total current in the STEM probe is of course rather small.  Also, only the area 
scanned is damaged, so that adjacent areas remain damage free.   

STEM alignment is also quite different to TEM alignment, but is also rather simple 
with the aid of the Ronchigram (Cowley, 1979), the diffraction pattern from a 
stationary, focused probe.  A thin amorphous specimen is ideal, in which case the 
Ronchigram shows if the illuminating probe is sufficiently coherent, and allows the 
objective aperture to be aligned accurately onto the optic axis of the objective lens, 
and the astigmatism to be corrected.  The objective aperture for STEM is the probe-
forming aperture; in TEM/STEM microscopes this is usually the condenser aperture 
for TEM operation.  To form a coherent probe one must have sufficient 
demagnification between source and specimen (this may require increasing the 
condenser lens excitation).  Near focus, a patch of coherent speckle pattern is seen in 



the diffraction pattern (with no objective aperture).  Then the focus and astigmatism 
can be adjusted to give a pattern as in Fig. 20(a).  To form a Z-contrast image an 
optimum objective aperture is centered on the pattern, a high angle annular detector 
centered on it, and the probe is scanned.  It is particularly convenient if the 
Ronchigram can be observed through the hole in the detector as the beam is scanning. 

 5.  Future Developments 
As discussed earlier, in an uncorrected system the optimum aperture is limited to 
rather small angles by the spherical aberration of the objective lens.  A round lens 
always has a positive spherical aberration, but combinations of higher order optical 
elements can be arranged to produce a negative spherical aberration and cancel the 
effect overall.  Working schemes have recently become feasible due largely to 
increased computer power that allows autotuning of all aberrations up to third order 
(Dellby et al., 2001; Haider et al., 1998a; Haider et al., 1998b; Krivanek et al., 1999).  
Figure 20(b) shows the enlarged region of approximately constant phase achieved 
with such a corrector recently installed on the VG Microscopes HB 501 UX STEM at 
Oak Ridge.  Since aperture angle determines resolution, this directly transfers to 
increased resolution.  Figure 20(c) shows an image of Si〈110〉 obtained with this 
microscope in which the dumbbells are seen clearly resolved.  In the power spectrum, 
Fig. 20(d), the presence of the Si(400) spot signifies information transfer at 0.136 nm, 
significantly better than the 0.22 nm uncorrected optimum resolution. 

Fig. 20.  Ronchigram showing patch of approximately uniform phase obtained in (a) an uncorrected 
100 kV STEM, (b) after correction of aberrations up to fifth order.  Circle shows the optimum 
objective aperture.  (c) Z-contrast image of Si〈110〉 resolving the dumbbells at a spacing of 0.136 nm, 
as shown by the presence of the Si(400) spot in the Fourier transform of the image intensity (d) 
(courtesy A. Lupini). 

1 nm 
0.136 nm  

a b 

c d 



6.  Summary 
This review has outlined the quantum mechanical basis for regarding Z-contrast 
imaging and EELS in the STEM as a directly interpretable, column-by-column image 
and analysis.  These techniques form a powerful basis for structure determination that 
provides a first order model without the need to solve any phase problem.  In the 
examples discussed, theoretical modeling has been used to refine the structures, and 
make the link to properties through calculation of impurity or vacancy segregation 
energies and electronic structure.  Future developments in the correction of 
aberrations offer the potential for greatly improved sensitivity and signal to noise 
ratio, with single atom sensitivity in both imaging and analysis.  This will lead to a 
new level of insight into the atomic origin of materials properties.  It will bring the 
ability to understand the limiting factors in optical and electronic devices, the active 
sites and mechanisms in catalysis, the origin of strength and ductility in structural 
materials and the origin of the unique properties of nanostructured materials.  There is 
a bright future for electrons. 
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