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1. Introduction 

Historically, the development of the transmission electron microscope has followed the 
path of continually increasing the degree of coherence of the imaging process.  This is 
despite the fact that coherent high resolution images suffer from the phase problem 
which means they cannot be directly inverted to give the object.  Interpretation must 
necessarily rely on simulation of images of trial objects.  Even with the prospect of 
spherical aberration correction, coherent images will still take many forms depending 
on objective lens defocus and specimen thickness, and the inversion problem will 
remain.   

In the last decade, electron probes of atomic dimensions have become available in 
commercial electron microscopes, and make possible the efficient realization of 
incoherent imaging.  Incoherent images have no phase problem, and therefore can be 
directly inverted to the object without the need for image simulations.  Furthermore, the 
directly interpretable Scherzer resolution limit is significantly higher for incoherent 
imaging than for coherent imaging, in fact, the information limit is double that of bright 
field coherent imaging, and in addition the sensitivity to instabilities in defocus and 
energy is greatly reduced.  The incoherent image uses high angle scattering which leads 
to strong atomic number (Z) contrast, and also makes simultaneous electron energy loss 
spectroscopy (EELS) possible from single atomic columns selected from the image.  In 
the quest for higher resolution to understand the atomic origins of materials properties, 
incoherent imaging would appear to hold substantial advantages. 

In this review we first describe incoherent imaging in light optics, and then the 
special considerations for incoherent imaging with electrons, which are not absorbed in 
the sample like photons, but only scattered.  It is seen that an annular detector in STEM 
with a high inner angle provides an almost perfect approximation to incoherent 
imaging.  The image is given by a straightforward convolution of the probe intensity 
profile with the scattering power of the object.  High angle scattering occurs close to 
the atomic sites, so that the image resolution is dominated by the probe intensity 



profile.  These characteristics are retained even in the presence of strong dynamical 
diffraction.  Such multiple scattering effects do not alter the total intensity falling on 
the detector, with the result that the image does not show the strong thickness 
oscillations characteristic of coherent images, and is still given by a simple 
convolution.  The brightness of atomic columns seen in the image is still directly 
related to their mean square atomic number and the image can still be directly inverted.  
It is this behavior that makes Z-contrast imaging so powerful for structure 
determination of interfaces and defects such as dislocation cores.   

 
 

2. Incoherent Imaging with Photons 

A perfect incoherent image results from a self-luminous object.  As shown in Fig. 1a, 
each part of the object emits independently, so there are no permanent phase 
relationships between rays emerging from neighboring parts of the object.  After 
passing through the imaging system, Abbé theory tells us that each point is blurred into 
an Airy disc, but discs from neighboring points are uncorrelated in phase and no 
  

Figure 1.  (a) Perfect incoherent imaging of a self-luminous object; (b) perfect coherent imaging of the same 
object illuminated by a plane wave. 

 
interference is observable on a long time scale.  We simply square each Airy disc 
amplitude A(R) into its intensity A2(R), and the image is given by the convolution of 
the object intensity function O2(R) with A2(R) 
 
 I(R) = O R( )2 !A R( )2 . (1) 

 
Now if there are permanent phase relationships between nearby parts of the object 

the situation is completely different.  Fig.  1b shows a plane wave illuminating the same 



object.  Now, we cannot square up the Airy discs from each point because the two Airy 
discs have a permanent phase relationship which we must know to determine the 
intensity.  The phase problem has appeared; the image is now given by 

 
 I(R) = O R( )!A R( )( )2 . (2) 

 
 Because of the interference we can no longer interpret the image directly in terms 

of object properties.  This was realized over one hundred years ago by Lord Rayleigh 
(1896).  He further realized that by illuminating the object with a large range of angles 
the phase factors are averaged and an approximation to incoherent imaging can be 
achieved.  In his words “the function of the condenser in microscopic practice is to 
cause the object to behave, at any rate in some degree, as if it were self-luminous, and 
thus to obviate the sharply-marked interference bands which arise when permanent and 
definite phase relationships are permitted to exist between the radiations which issue 
from various points of the object".   

He also realized that incoherent imaging gives significantly better resolution than 
coherent imaging.  For the situation in Fig.  1, clearly the incoherent resolution 
function A2(R) must be sharper than A(R) for the coherent mode.  Fig.  2 shows Lord 
Rayleigh’s classic result comparing the observation of two point objects illuminated 
coherently and incoherently. The two point objects are separated so that the first zero in 
the Airy disc of one coincides with the central maximum of the other, a condition that 
has become known as the Rayleigh resolution criterion. With incoherent illumination 
there are clearly two peaks in the intensity distribution and a distinct dip between them; 
the two objects are just resolved, and the peaks in the image intensity correspond 
closely with the positions of the two objects.  With coherent illumination by a plane 
wave source the two objects are unresolved.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Image intensity for two point objects P1 and P2 illuminated incoherently, coherently in phase, and 
coherently 180˚ out of phase, after Lord Rayleigh  (1896). 
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However, if the two objects are illuminated coherently but 180˚ out of phase, the 
intensity drops to zero half way between them; they are always resolved whatever their 
spacing.  Unfortunately it is impossible to achieve out of phase illumination for more 
than one specific image spacing.  For example, illuminating from one particular angle 
will give out of phase illumination for one spatial frequency, but other spatial 
frequencies will have different phase relationships and show different contrast.  Also 
the two peaks in the image intensity are significantly displaced from their true 
positions.   

Incoherent imaging gives the optimum combination of high resolution with a 
faithful representation of the object.  It allows direct image interpretation, as we do in 
our everyday lives with our eyes.  Our task is to achieve the same ideal of incoherent  
imaging with electrons. 

 
   

3. Incoherent Imaging with Electrons 
 
3.1. CTEM OR STEM? 

 
Figure 3.  Ray diagrams for coherent bright field imaging in (a) the CTEM and (b) the STEM. 
 
As seen in the ray diagrams of Fig. 3, the essential difference between the conventional 
TEM and the STEM is the position of the objective lens relative to the specimen.  In 
the CTEM it is used to gather diffracted beams which are brought to a focus on the 
microscope screen where they interfere to produce the image contrast.  The electrons 
travel from top to bottom in the figure.  Not shown are additional projector lenses to 
provide higher magnification.  In Fig. 3b, the optical path of the STEM is shown, with 
the electrons travelling from bottom to top.  A point source is focussed into a small 
probe by the objective lens, which is placed before the specimen.  Not shown are the 
condenser lenses (equivalent to the CTEM projector lenses) between the source and the 
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objective lens to provide additional demagnification of the source, and the scan coils to 
move the probe sequentially from point to point across the specimen and form the 
image.  Transmitted electrons are detected through an angular range defined by the 
collector aperture.  For the small axial collector aperture shown, the two microscopes 
have identical optics, apart from the fact that the direction of electron propagation is 
reversed.  Since image contrast in the electron microscope is dominated by elastic 
scattering, no energy loss is involved and time reversal symmetry applies.  With 
equivalent apertures, the image contrast is independent of the direction of electron 
propagation and the two microscopes are optically equivalent: the STEM bright field 
image will be the same image, and described by the same imaging theory, as that of a 
conventional TEM with axial illumination.  This is the principle of reciprocity, the 
original basis for understanding the formation of high resolution lattice images in the 
STEM (Cowley, 1969, Zeitler and Thomson, 1970). 

Now suppose our objects consist of crystals oriented along low index directions, i.e. 
discrete columns of atoms.  Applying the concepts of Lord Rayleigh, whether we have 
coherent or incoherent imaging depends on whether the Airy discs of neighboring 
atomic columns have permanent and definite phase relationships between them, which 
depends on the transverse coherence length at the object.  With an axial illumination (or 
collection) aperture much smaller than a typical Bragg angle, the transverse coherence 
length will be much longer than interatomic spacings, as shown in Fig. 4a.  This is a 
coherent imaging condition.  If however the illumination (or collection) aperture is  
 

 
 

Figure 4.  Schematic showing how the transverse coherence length Lt of the condenser aperture (CTEM) or 
collector aperture (STEM) determines if neighboring atoms are imaged coherently (a) or incoherently (b). 
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opened up much wider than a typical Bragg angle, then the transverse coherence length 
at the specimen is much smaller than the atomic separation.  No permanent definite 
phase relationship exists between the electrons illuminating (or detected from) the two 
columns.  This is incoherent imaging. 

It would seem that all we need to do is to open up the illumination (or collection) 
aperture in the CTEM (or STEM) to achieve incoherent imaging, in a way exactly 
analogous to Lord Rayleigh’s condenser lens.  A useful criterion for the minimum 
aperture semiangle θ to achieve incoherent imaging of two objects separated by d is 

 
 θ = 1.22 λ/d, (3) 
 
where the image intensity varies by less than 5% from the incoherent expectation 
(Jesson and Pennycook, 1993).  In this case the Airy disc coherence envelope of the 
illumination (collection) aperture is half the width of that of the objective aperture.  
This condition therefore corresponds to separating the coherence envelopes by double 
the Rayleigh resolution criterion.   

Although optically equivalent, there is a large difference between the CTEM and 
STEM as regards image efficiency.  The objective apertures in both microscopes are 
similar in size.  For coherent imaging the illumination (collection) aperture must be 
much smaller than the objective aperture, but conversely much larger for incoherent 
imaging.  It creates much less damage in the specimen to illuminate with the small 
aperture and collect with the large aperture.  Illuminating with the large aperture means 
many more electrons pass through the sample than are collected for imaging, and beam 
damage is much greater.  The CTEM is therefore the natural choice for coherent 
imaging, whereas the STEM is the instrument of choice for incoherent imaging. 

For the incoherent image, better contrast results from the complementary annular 
dark field detector, because the unscattered beam is then removed from the image.  This 
is particularly important for thin weakly scattering objects.  The concept of the annular 
detector was introduced by Crewe, Wall and Langmore, 1970, and spectacular images 
of single heavy atoms were obtained (see for example Isaacson, Ohtsuki and Utlaut, 
1979).  In the field of materials, despite annular detector images showing improved 
resolution (Cowley, 1986) and theoretical predictions of the lack of contrast reversals 
(Engel, Wiggins, and Woodruff, 1974), it was generally believed impossible to achieve 
an incoherent image at atomic resolution.  A crucial element in realizing incoherent 
imaging was the development of the high angle annular detector, suggested first as a 
means of improving the contrast of small catalyst clusters on amorphous or diffracting 
supports (Treacy, Howie and Wilson, 1978, Howie, 1979 and Treacy, Howie and 
Pennycook, 1980).  The mechanism here was the reduction of coherent diffraction due 
to the Debye-Waller factor and increased Z-contrast at higher scattering angles.   

Only much later was it realized how the detector imposes a narrow coherence 
envelope which results in almost perfect incoherent imaging.  Incoherent images of 
thick crystalline materials were first reported by Pennycook and Boatner (1988), and 
the explanation for the incoherent characteristics despite the strong dynamical 
diffraction followed (Pennycook and Jesson, 1990).  The narrow coherence envelope 
preferentially selects highly localized s-type Bloch states, and reduces the contribution 



of less localised states.  Inter-column interference is eliminated even in thicker crystals.  
A detailed discussion of transverse incoherence was given by Jesson and Pennycook 
(1993) and in Jesson and Pennycook (1995) it was shown how phonon scattering also 
destroys coherence through the thickness of the sample.  Recently a complete 
mathematical derivation  of the dynamical object function has been given by Nellist 
and Pennycook (1998a). 

Finally we note that because the detector aperture can be made much greater than 
the objective aperture size, the imaging can be made to approach the ideal of perfect 
incoherent imaging as closely as desired.  In contrast, Lord Rayleigh’s best condenser 
lens was equal to the objective lens, and improved incoherence could only be achieved 
by reducing the objective aperture and degrading the image resolution. 

 
3.2. COMPARISON OF COHERENT AND INCOHERENT IMAGES 

The difference between coherent and incoherent characteristics is apparent in the 
contrast transfer functions of Fig. 5, shown for the VG Microscopes HB603U operating 
at 300kV with an objective lens Cs of 1mm and optimum conditions for each mode as 
defined originally by Scherzer (1949).  All images presented here were taken with this 
microscope.  For the coherent imaging mode, the contrast oscillates rapidly at high 
spatial frequencies, and is zero at zero spatial frequency.  Because of the reversals, 
atoms in distorted regions such as grain boundaries may reverse contrast or be absent 
from a phase contrast image.  The incoherent mode has a smoothly decaying positive 
transfer function which avoids contrast reversals and extends to higher resolution.  
Transfer is unity at zero spatial frequency, so that image intensities are proportional to 
thickness (in the absence of multiple scattering). 
 
 
 
 
 
 
 
 
 
 
 

a             b 
 
Figure 5. Contrast transfer functions for a 300 kV microscope with an objective lens of 1mm Cs; (a) coherent 
imaging conditions; (b) incoherent imaging conditions.  Curves assume the Scherzer (1949) optimum 
conditions shown in table 1, (a) defocus -505 Å, (b) defocus -438 Å, aperture cutoff  0.935 Å-1. 

  
Both the axial bright field phase contrast image and the Z-contrast image can be 

recorded simultaneously on a STEM, and carry very different information.  As an 
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example, Fig. 6 compares images of an Al-Ni-Co decagonal quasicrystal.  This 
decagonal phase is quasiperiodic in two dimensions but periodic along the third axis, 
which makes it ideal for electron microscopy.  Viewing along the periodic direction, 
the ten-fold clusters arranged in their quasiperiodic tiling are easily observed in the 
bright field image.  However, the Z-contrast image clearly shows improved resolution.  
Now the central regions of the ten-fold rings are seen to have two different structures, 
either a disordered ring of almost uniform intensity or much more localised bright 
columns.  This is evidence of chemical ordering.  From higher magnification images of 
the clusters the Al columns could be located and the structure determined (Yan, 
Pennycook and Tsai, 1998). 

 

 
Figure 6.  (a) Bright field and (b) Z-contrast images of an Al-Ni-Co decagonal quasicrystal taken 
simultaneously on the STEM showing the increased resolution in the incoherent mode. 
 

The electrical resistivity of amorphous alloys of Si1-xVx reveal a metal-insulator 
transition near x ~ 0.18 with corresponding changes in electronic structure and atomic 
structure seen by X-ray and neutron diffraction.  Bright field and Z-contrast images of 
two samples above and below the transition point are shown in Fig. 7 (Tanaka et al., 
1997).  The bright field images show the speckle pattern of the amorphous phase with 
little structural information, but the Z-contrast images show very distinct differences.  
For x = 0.12, small bright clusters ~1-2 nm in size are seen, whereas for x = 0.30, a 
continuous bright region is observed.  This striking difference in connectivity was not 



apparent from the X-ray or neutron diffraction data, but is clearly the origin of the 
transition from the insulating to the metallic state. 

 

  
Figure 7.  Bright field (left) and dark field Z-contrast images (right) of amorphous Si-V alloys.  The bright 
field images show little contrast but the Z-contrast images show a change in structure from isolated V-rich 
clusters to a continuous distribution on increasing the V concentration from 12% (upper) to 30% (lower). 
 

Figure 8 shows a bundle of iodine-intercalated carbon nanotubes (Grigorian et al., 
1998).  Because of their cylindrical form, only a few atomic layers are parallel to the 
electron beam.  Nevertheless, lattice fringes from the tubes are seen clearly in the phase 
contrast image because it is tuned to the spacing expected, and filters out the uniform 
background near zero spatial frequency due to all other atoms.  The Z-contrast image 
on the other hand is sensitive to the absolute numbers of atoms under the beam.  Where 
there is no significant dynamical diffraction, it can be considered as an image of 
projected mass thickness.  There is no detectable contrast from the tubes themselves, 
but the iodine intercalation is clearly visible.  Thus the two kinds of images are highly 
complementary in this case. 

 



 
 

Figure 8.  Bright field (a) and Z-contrast (b) images of iodine intercalated carbon nanotubes  
 

 
 

Figure 9.  (a) Bright field and (b) Z-contrast images of a Rh catalyst particle on γ-alumina. 
 
Fig. 9 shows a Rh catalyst cluster supported on γ-alumina (Pennycook et al., 1996).  

In this case, the bright field image is dominated by phase contrast from the carbon film 
(Z = 6) used to support the sample, whereas the Rh particle (Z = 45) is clearly visible in 
the Z-contrast image.  Bright field imaging of small metal clusters becomes very 
difficult for particles less than about 1 nm in size, due to the inevitable coherent 
interference effects from the support and the lack of Z-contrast (Datye and Smith, 
1992).  

The ultimate example of Z-contrast imaging is the detection of single Pt atoms on γ-
alumina shown in Fig. 10 (Nellist and Pennycook, 1996).  Here again the two images 
are very complementary.  The orientation of the γ-alumina support can be deduced 



from the bright field image, while single atoms, dimers and trimers are detectable in the 
Z-contrast image.  Spacings and angles between the Pt atoms are constrained to match 
the atomic spacings in the γ-alumina surface, suggesting the possible adsorption sites 
shown in the schematic.  The ability to work with insulating, rough substrates of this 
kind represents an important advantage of STEM compared to atomic force microscopy 
or scanning tunneling microscopy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Z-contrast image of a Pt catalyst supported on γ-alumina.  The spacings and angles between Pt 
atoms match the orientation of the support, suggesting the possible configurations shown in the schematic.  A 
Pt trimer and two dimers are circled. 
 
3.3. PROBE FORMATION IN STEM 

Consider a plane wave filling the objective aperture in the STEM.  The probe profile is 
just the intensity distribution in the object plane, the square of the Airy disc amplitude 
distribution.  Due to spherical aberration and defocus, the phase of each point in the 
wavefront suffers an aberration eiγ as it propagates to the object plane.  The probe is 
therefore best described as a coherent, converging, phase-aberrated spherical wave. 

We will denote transverse coordinates by upper case letters, and the beam direction 
as z, so that positions in the objective back focal plane are labeled by the two-
dimensional vector K, and positions in real space by (R,z).  Assuming the objective 
aperture is centered on the optic axis of the lens, |K| = χθ is the transverse component 
of the incident electron wavevector χ = 2π/λ, where λ is the electron wavelength.  We 
will write the objective lens transfer function as  

 
 A(K) = H(K) eiγ(K) (4) 

Pt
O
Al



 
where the amplitude H(K) is unity inside the aperture and zero elsewhere.  The transfer 
function phase factor γ is given by 

 

 γ = !
"

#f$2 +
1
2
Cs$

4% 
& 

' 
( =

1
2)

#fK2 +
1
2
Cs
K4

)2
% 
& 
* ' 

( 
+ , (5) 

 
where Cs is the objective lens spherical aberration coefficient and Δf is the defocus.  
The amplitude distribution P(R) of the STEM probe is obtained by integrating the 
transfer function over the objective aperture,  
 
 P(R) = ∫ A (K) ei(K·R) dK. (6) 
 
Since a shift in real space by R is equivalent to multiplication in reciprocal space by 
ei(K·R), if the probe is translated to a position RO the probe amplitude distribution is 
given by 
 
 P(R - R0) = ∫ A(K) ei K·(R – R0) dK. (7) 

 
The probe intensity distribution is given by P2(R).  A focal series is shown in Fig. 

11 for a 300 kV STEM with Cs = 1mm and an objective aperture of 9.4 mrad.  Notice  
how the intensity profiles are not symmetric with defocus.  At low values of defocus 
the probe is close to Gaussian in nature, while at high defocus values the probe 
develops a sharper central peak but also a substantial “tail”, a subsidiary maximum  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.  Probe intensity profiles for a 300 kV STEM with Cs = 1mm and a Scherzer optimum objective 
aperture of 9.4 mrad, with corresponding simulated images of Si(110). 

-500Å -700Å-400Å-300Å -600Å



around the central peak.  Although the width of the central peak is significantly 
reduced, actually dropping to below 1 Å at a defocus of -500 Å, now over half the total 
intensity is in the tail.  This gives rise to significant false detail in the image which 
makes intuitive interpretation no longer straightforward, as shown by the corresponding 
simulated images of Si〈110〉 shown in Fig. 11. 

For intuitive image interpretation, the optimum probe is that which gives the 
narrowest central peak but without significant tails.  The situation was analysed by 
Scherzer in his classic 1949 paper.  Although this paper is well known for the so-called 
Scherzer optimum conditions for bright field phase contrast imaging, it also gives 
optimum conditions for a wide illumination aperture.  They are somewhat different 
from the coherent conditions, as seen in Table 1, primarily through the use of a slightly 
smaller aperture to eliminate probe tails.  The resulting image resolution is significantly 
higher than for the coherent case, as expected.  The question of the optimum probe has 
also been discussed in detail by Crewe and Salzman, 1982. 

 
TABLE 1.  Comparison of Scherzer optimum conditions for 
coherent and incoherent imaging 
 

 

Resolution limit          

Optimum aperture 

Coherent Imaging 

0.66 Cs
1/4 λ3/4 

1.51 (λ/Cs)1/4 

Incoherent Imaging 

0.43 Cs
1/4 λ3/4 

1.41 (λ/Cs)1/4 

Optimum defocus -1.15 (Csλ)1/2 -(Csλ)1/2 

 
 

This ideal electron-optical limit is achieved when the objective aperture is 
illuminated by a plane wave, which requires the size of the geometric image of the 
source to be zero.  This in turn requires infinite demagnification of the source by the 
condenser and objective lenses resulting in zero current.  To compromise we typically 
work with a source contribution of a few tenths of an angstrom, much smaller than the 
probe profile.  This incoherent broadening of the probe results in less image contrast 
than would be calculated for the theoretical probe.  The size of the broadening can be 
estimated by convoluting the theoretical probe by a narrow Gaussian, then convoluting 
with the object function and comparing to the experimental image intensity. 

 
3.4. INCOHERENT IMAGING OF THIN WEAKLY SCATTERING OBJECTS 

3.4.1. Detection of all Scattered Electrons 

For a thin weakly scattering specimen, we can assume the probe to be a wave packet 
with amplitude P(R) throughout the thickness of the specimen, and calculate the 
amplitude ψs scattered into the direction Kf from the first Born approximation, 
(Pennycook et al., 1997) 



 
 ψs(Kf) = c ∫ e-iKf⋅R V(R) P(R - R0) dR, (8) 
 

where V(R) is the projected potential and c =
  

m
2!!2

.  Integrating the scattered intensity 

|ψs|2 over all final states Kf, and using the identity, 
 
 ∫  e-iKf ⋅ (R - R′) dKf = (2π)2 δ(R - R′) (9) 
 
gives the total scattered intensity as 
  
 I(R0) = ∫  O(R) P2(R - R0) dR, (10) 
  
 = O(R) * P2(R0), (11) 
 

a convolution of the probe intensity profile P2(R) with an object function O(R) given 
by 

 O(R) = σ 2 V2(R), (12) 
 
where  σ = 2πc = χ /2E is the interaction constant.  Therefore, provided all scattered 
electrons could be collected, we would have incoherent imaging of the square of the 
projected potential with a resolution controlled by the incident probe intensity profile.  
The problem lies in the fact that many of the scattered electrons lie within the cone of 
the incident beam and cannot be distinguished from the unscattered electrons.  
Detecting the total transmitted intensity would give no contrast, as electrons are not 
absorbed just scattered.  This led to the so-called “hole-in-the-detector” problem; by 
cutting a hole in the annular detector large enough for the incident beam to pass 
through, not all the scattered electrons could be collected.  The problem is minimized 
by using a small objective aperture, but then only low resolution would be obtained.  So 
it was commonly believed that incoherent imaging was impossible at atomic resolution 
(Cowley, 1976, Ade, 1977).  The resolution of the problem is to use a hole in the 
detector that is large compared to the objective aperture, as discussed in section 3.1 
above.  The theory for this is presented next.   

 
3.4.2. Detection of High Angle Scattered Electrons 

We include the detector through the function D(Kf), which is unity over the detector 
and zero elsewhere, so that the total detected intensity is now  

 
 I(R0) = c2 ∫∫∫ e-iKf⋅(R-R′)V(R)V*(R′)P(R-R0)P*(R′-R0)D(Kf)dRdR′dKf, (13) 

 
which can be integrated over  Kf to give the image in terms of a real space detector 
function D(R″), where R″= R-R′,  



 
 I(R0) = σ 2 ∫∫ V(R″+R′)V*(R′)P(R″+R′-R0)P*(R′-R0)D(R″)dR′dR″. (14) 

 
Now it can be seen that if the detector function in real space is narrow on the scale of 
the probe, as it is for a high angle annular detector, then P(R″+R′-R0) will be 
practically constant during the R″ integration and the integral can be separated to give 
 
 I(R0) = σ 2 ∫ V(R″+R′)D(R″)dR″ ∫ V*(R′)P(R′-R0)P*(R′-R0)dR′. (15) 
 
Performing the R″ integration convolutes the detector function with the potential in real 
space.  As this is equivalent to multiplication in reciprocal space, it is clear that the 
detector selects only the high order Fourier components of the potential, i.e. it acts as a 
high pass filter.  The image is now given by 
 
 I(R0) = σ 2 ∫ [V2(R′)∗D(R′)]P2(R′-R0)dR′, (16) 
 
which is again in the form of a convolution, so we regain incoherent imaging with 
 
 I(R0) = O(R) * P2(R0), (17) 
 
but the object function is now high pass filtered, 
 
 O(R) = σ 2 [V2(R)∗D(R)]. (18) 
 

As before, if we have a bright field detector, D(Kf) = δ(0), then D(R″) = 1, and we 
cannot separate Eqn. 14.  The bright field image is given by 

 
 IBF(R0) = σ 2 �V(R) * P(R0)�2, (19) 

 
and we now have a phase problem. 
 
3.4.3. Image Contrast 

The origin of the image contrast can be seen by inserting Eqn. 7 for the probe into Eqn. 
13 for the intensity on the detector, 

 
 I(R0) = c2 ∫∫∫ e-iKf⋅(R-R′)V(R)V*(R′)∫ A(K) ei K·(R–R0) dK 

 × ∫ A*(K′)e-i K′·(R′–R0)dK′ D(Kf)dRdR′dKf. (20) 
 

Now the variables K and K′ refer to the incident cone of illumination.  Collecting terms 
in R and R′ we have   
 



 
 
 I(R0)   = c2 ∫∫ e-i(Kf-K)⋅RV(R) dR∫ ei(Kf-K′)⋅R′V*(R′)dR′ 

 × ∫ A(K)e-iK·R0dK∫ A*(K′)eiK′·R0dK′D(Kf)dKf. (21) 
 
Now the R and R′ integrations select the Kf-K and Kf-K′ Fourier components of the 
potential, and the image is given by 
 

 I(R0) = σ 2 ∫ V(Kf-K)V*(K′-Kf)∫ A(K)e-iK·R0dK∫ A*(K′)eiK′·R0dK′D(Kf)dKf. (22) 
 
This expression is simplified considerably by taking the Fourier transform with respect 
to R0 (Nellist and Pennycook, 1998b).  Defining a spatial frequency ρ  = K′-K, we 
obtain  

 I(ρ) = σ 2 ∫∫ V(Kf-K)V*(ρ  -Kf+K)A(K)A*(K+ρ)dKD(Kf)dKf. (23) 
 
We can see that the intensity of the image spatial frequency ρ  depends on a product of 
the probe-forming aperture functions with incident direction separated by ρ .  Clearly 
the contrast falls to zero if ρ  exceeds the objective aperture diameter.  Contrast comes 
only from regions of overlapping discs on the detector, as shown in Fig. 12a (Spence 
and Cowley, 1978).  This is also the origin of the factor of two improvement in 
resolution for incoherent imaging compared to axial bright field imaging.  In the bright 
field case no disc overlaps are detected if ρ  exceeds the objective aperture radius, as 
shown in Fig 12a.  The bright field STEM resolution limit is therefore the same as for 
bright field imaging in CTEM, as expected by reciprocity.  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 12. Diffraction pattern in the detector plane from a simple cubic crystal of spacing such that the angle 
between diffracted beams is greater than the objective aperture radius.  (a) An axial bright field detector 
shows no contrast, while in (b), regions of overlapping discs on the annular detector produce atomic 
resolution in the incoherent image. 
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Now if the detector is large compared to the range of incident wavevectors K, we 
can ignore the K dependence of the potential coefficients in Eqn. 16 and separate it into 
 

 I(ρ)   = σ 2 ∫ V(Kf)V*(ρ  -Kf)D(Kf)dKf ∫A(K)A*(K+ρ)dK. (24) 
 

Now we have again separated the image into a contribution dependent only on the 
specimen, and one dependent on the probe, and achieved incoherent imaging.  It is 
described in reciprocal space as, 
 
 I(ρ) = O(ρ) t(ρ) (25) 
 
where 
 

 O(ρ) = σ 2 ∫ V(Kf)V*(ρ  -Kf)D(Kf)dKf (26) 
 
is the Fourier transform of the object function O(R) in Eqn. 18, and  
 

 t(ρ) = ∫ A(K)A*(K+ρ)dK (27) 
 
is the Fourier transform of the probe intensity profile P2(R), which acts as the transfer 
function for incoherent imaging.  Transfer functions for the optimum Scherzer 
conditions are shown in Fig. 13, corresponding to the profiles shown in Fig. 11. Also 
shown is the ideal transfer function without any aberration.  The approximately 
triangular shape reflects the decreasing disc overlap with increasing spatial frequency.  
Increasing the defocus is seen to enhance the high spatial frequencies but reduces the 
transfer at lower frequencies.  In all cases the transfer reaches zero at the cutoff defined 
by the aperture.  If the aperture size is increased, the transfer function can be extended;  
Fig. 13b shows transfer functions obtained with a 13 mrad objective aperture, 
corresponding to an aperture cutoff of 0.74 Å.  At high defocus values, significantly 
improved transfer is obtained at spatial frequencies near and beyond the cutoff of the  
smaller aperture.  The curves are shown on the same vertical axis.  Note that the 
absolute transfer at zero spatial frequency scales as the square of the aperture diameter, 
i.e. is proportional to beam intensity.  At lower defocus values transfer is very similar 
to that with the optimum aperture and an intuitive image is expected.  Contrast will be 
reduced however compared to the optimum aperture because of the much larger 
uniform background.  

Experimental verification of enhanced transfer under such conditions is seen in Fig. 
14, which shows images of Si 〈110〉 obtained with a 17 mrad objective aperture (Nellist 
and Pennycook, 1998c).  Under optimum defocus the dumbbells are well resolved (Fig. 
14a) with maxima close to the atomic positions, the expected intuitive image.  The 
Fourier transform of the image intensity, Fig. 14b shows the spatial frequencies being 
transferred, which includes the {004} reflection at a spacing of 1.36 Å.  On increasing 
the objective lens defocus, Fig. 14c, the image is no longer intuitive but many 
additional spots are seen in the Fourier transform (Fig. 14d).  The {444} spot at 0.78 Å 
is the highest resolution so far achieved in an electron microscope.  This result 



demonstrates very clearly the improved resolution available with incoherent imaging, 
as first pointed out by Lord Rayleigh. 

 
 
 
 
 
 
 
 
 
 
 
 
 

a b 
 
Figure 13.  (a) Transfer functions for a 300 kV STEM with Cs = 1mm and a Scherzer optimum objective 
aperture of 9.4 mrad; (b) extended transfer obtained with an oversized 13 mrad objective aperture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14. Images and corresponding Fourier transforms of Si 〈110〉 obtained with a 17 mrad objective 
aperture; (a,b) at Scherzer defocus passing the {004} spacing and resolving the dumbbell; (c,d) using a high 
underfocus giving increased transfer at high spatial frequencies, including the {444} spacing at 0.78 Å. 
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3.5. INCOHERENT IMAGING OF THICK WEAKLY SCATTERING OBJECTS – 
z-COHERENCE 

Because of the short wavelength of high energy electrons, a short transverse coherence 
length requires an inner detector angle of only a few degrees.  The phase differences 
between atoms separated along the beam direction will be much shorter than between 
atoms separated laterally, as shown in Fig 15.  Atoms spaced by x and z in the 
transverse and longitudinal directions respectively, when viewed from direction θ have 
phase differences of xsinθ and z(1-cosθ) respectively.  For small scattering angles these 
are approximately xθ and zθ2/2, suggesting that as atoms are formed into columns, 
although columns separated laterally will be imaged incoherently, all atoms in an 
individual column will scatter coherently.  Useful insights into the physics of this 
situation can be seen if we ignore temporarily the complications of dynamical 
scattering and treat an entire column as a weakly scattering object.  We will see that it 
is thermal vibrations that break coherence in the z-direction, by inducing transverse 
displacements comparable to the detector coherence envelope. 
 
3.5.1. Kinematical scattering from a column of atoms 

We now need to include the z dimension 
in calculating the amplitude scattered to 
each final state Kf.  Ignoring probe 
dispersion, Eqn. 8 is replaced by 
 
ψs(R0,Kf) = c ∫ e-ikf⋅rV(r)P(R-R0)dr.  (28) 
 
Separating the transverse and longitudinal 
directions, 
 
ψs(R0,Kf) = c ∫ e-iKf⋅RV(R)P(R-R0)dR  

  × ∫ e-ikzz dz,             (29) 
 
where kz is the difference in z components 
of the incident and scattered wave vectors 
due to the curvature of the Ewald sphere, 
and V(R) is the projected potential per 
unit thickness.  The integration over z 
gives the usual kinematic shape factor for 
a crystal of thickness t, 
 

      ∫ e-ikzz dz = sin(kzt / 2)
kzt / 2

,          (30)  

where 
 kz  = χ (1 – cosθ) ≈ Kf

2/2χ. (31)  

Figure 15. Path differences between 
scattering from atoms separated in the 
transverse and longitudinal directions. 
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Because of this shape factor the detector will now be covered with a system of 
thickness fringes, becoming denser with increasing scattering angle and with thicker 
crystals.  The detected intensity is now oscillatory with thickness, as expected with 
coherent scattering (Jesson and Pennycook, 1993). 
 
3.5.2. The Role of Thermal Vibrations 

We now look at the role of phonons in breaking the coherent integration over thickness 
in Eqn. 21.  We consider each atom to have an instantaneous displacement due to 
thermal motion of u = (U, uz) and take the time average to find the scattered intensity.  
The general expression for the intensity detected from a vibrating crystal is  

 
 I(R0)   = c2 ∫∫∫ e-iKf⋅(R-R′)V(R)V*(R′)P(R-R0)P*(R′-R0)dRdR′  

 × ∫∫〈e-ik⋅(u-u′)〉e-ikz(z-z′) dzdz′dKf. (32) 
 
Here the angled brackets denote the time-averaged phase factors due to the thermal 
displacements.  To evaluate the effect of these thermal displacements in breaking the 
coherence in the z integration we need an explicit model for a vibrating crystal.  The 
convenient Einstein model assumes independently vibrating atoms, and will 
automatically break the z-coherence.  To see physically how the coherence is broken it 
is necessary to go to a phonon model, in which neighboring atoms are vibrating in 
phase (Jesson and Pennycook, 1995).  Such a model has been developed by Warren 
(1990), using a Debye dispersion relation and assuming equipartition.  It reduces the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 16. Degree of coherence between an atom at the origin and neighboring atoms along a column 
using a phonon model of thermal vibrations.   

 
 
 



time average to a convenient analytical form, given by 
 

  W = 〈e-ik⋅(u-u′)〉 = exp 2M
Si(qB u! u' )
qB u ! u'
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Here Si(x) is the sine integral function, M = Bs2  is the usual Debye Waller factor with 
s = (sinθB/λ), where θB = θ/2 is the Bragg angle, and qB is the Brillouin zone boundary 
in the z-direction.  Figure 16 shows plots of this function for different values of s 
showing how the coherence rapidly reduces as the separation of atoms along the 
column increases.  For large separations the degree of coherence approaches the 
limiting value of e-2M, which is the Einstein value for the strength of coherent 
reflections in his model of independently vibrating atoms.  The phonon model shows 
clearly that atoms close together scatter with greater coherence than those far apart, 
leading to the concept of a longitudinal coherence volume.  

Therefore, the need for large detector angles to ensure intercolumn incoherence 
(transverse incoherence) will automatically break the intracolumn coherence leading to 
longitudinal incoherence also, which is extremely convenient.  To see which phonon 
modes are involved we can expand the time average as 
 

  〈e-ik⋅(u-u′)〉  =  〈e-i[Kf⋅ (U-U′) + kz(uz-uz′)]〉. (34) 
 
For a high angle detector, the transverse momentum Kf is much greater than kz, and so 
amplifies the effect of the transverse displacements U.  Since it is the z integration we 
are trying to break, it is phonon wavevectors in the z direction that are needed (to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17. Thickness dependence of the scattering from a column of Rh atoms spaced 2.7 Å apart along the 
beam direction for low, medium and high scattering angles.  The coherent thickness oscillations at low angles 
are largely suppressed at high angles. 
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compensate for the curvature of the Ewald sphere).  So transverse modes of phonons 
travelling in the z direction are required to break the z-coherence.   

The change in the thickness dependence of the image intensity with increasing 
annular detector angle is largely governed by the changing longitudinal coherence 
length.  The thickness behavior changes from oscillatory at low angles reflecting the 
long coherence length to more linear at large angles where the coherence length is 
much shorter than the specimen thickness.  This is illustrated in Fig. 17 for a column of 
Rh atoms 2.7 Å apart illuminated by 300 kV electrons.  With low detection angles the 
scattering is almost entirely coherent.  With increasing detector angle the scattered 
intensity exhibits an initial coherent dependence with thickness, changing to an 
incoherent dependence as the column becomes significantly longer than the coherence 
length.  At higher angles the initial coherent oscillation occurs more quickly, and the 
thickness dependence is mostly linear.  Also, a significant fraction of the thermal 
displacements of the atoms are due to zero point fluctuations which will not disappear 
on cooling the sample.  Thus it should not be assumed that the scattering will become 
coherent on cooling, but the required detection angles will be increased somewhat. 

Although this kinematic scattering model is inappropriate for thick crystals with 
strong dynamical diffraction, the physical insights remain valid; it is the phonons that 
break the coherence in the z direction and remove the strong oscillatory thickness 
behavior.  This gives us an image that is effectively integrated through the specimen 
thickness rather than an image based on the exit face wave function.   

 
3.6. INCOHERENT IMAGING OF THICK CRYSTALS: DYNAMICAL 

EFFECTS 

3.6.1. Bloch States 

Bloch states are the quantum mechanical stationary states of a fast electron in a crystal, 
and therefore the natural basis for examining the effects of dynamical diffraction.  If it 
were possible to excite a single Bloch state at the entrance surface of a crystal, it would 
propagate to the exit surface unchanged, except for a depletion in amplitude due to 
processes such as phonon excitation and inelastic scattering.  Such processes are 
usually modeled by a phenomenological absorption coefficient.  However, Bloch states 
are not the stationary states of the fast electron in the vacuum, plane waves are, and so 
it is necessary to couple the two sets of states at the crystal entrance surface.  For 
example, a single incident plane wave can be expanded into a complete set of two-
dimensional Bloch states bj (K,R) as 

 

 ψ(R,z) = 
j
! εj (K)bj (K,R)eiK⋅Re-ikz

j(K)z e-µj(K)z (35) 

 
with excitation coefficients εj(K) and absorption coefficient µj(K) propagating along 
the z axis with wavevector kz

j(K).  The first six states for Si(110) are shown in  
Fig. 18, and take on the form of molecular orbitals about the atomic strings.  Usually, 
the wave function inside the crystal can be well-represented with just a few strongly 



excited Bloch states, and it is their propagation with different wavevectors kz
j that leads 

to the depth dependent dynamical diffraction effects.  The 1s states are located over the 
deepest part of the projected potential and consequently have the highest kinetic energy 
and the largest kz

j.  As they overlap little with neighboring columns, their kz
j(K) is 

independent of K.  Such states are said to be non-dispersive.  These states that are the 
most localized in real space are the broadest in reciprocal space.  States that are less 
localized in real space will overlap and perhaps hybridize with states on neighboring 
columns.  It is these states that are responsible for the non-local effects in phase 
contrast imaging.  In reciprocal space such states are narrow.  Now it begins to be clear 
how a small axial detector will detect the interference between all highly excited Bloch 
states whereas the high angle detector will be sensitive only to the 1s states. 
 

 
 
Figure 18.  Intensities of the first six Bloch states in Si(110) with their molecular orbital assignments.  The 1s 
states are located around the Si atomic columns. 
 
3.6.2. The Dynamical Object Function 

Dynamical diffraction can be included in the expressions for detected intensity given in 
the previous sections simply by replacing the aperture function H(K) by H(K)ψ(R,z).  
For example, Eqn. 6 for the probe becomes 
 

 P(R-R0,z) = ∫ A(K)
j
! εj(K)bj(K,R)eiK⋅ (R-R0)e-ikz

j(K)ze-µj(K)zdK. (36) 

And the probe intensity inside the crystal is now given by P2(R-R0,z).  This is now 
the total wave function inside the crystal (incident wave plus scattered waves).  As 
shown by Nellist and Pennycook (1998a) it can be integrated over the detector and 
Fourier transformed with respect to Ro to give an expression analagous to Eqn. 16 for 
the image spatial frequency ρ  



 
 I(ρ ,z) = ∫ D(Kf)dKf ∫ A(K)A*(K+ρ)

j,k
! εj(K)εk*(K+ρ)bKf

j(K)bKf
k*(K) 

 × e-i[kz
j(K)-kz

k(K)]zdK, (37) 
 

where bKf
j(K) represents the Kf Fourier component of the Bloch state j, and we have 

ignored absorption for the time being.  The enormous advantage of this fully reciprocal 
space representation is that the integral over the detector can be performed immediately 
to see which Bloch states give important contributions to the image intensity.  This 
results in vast savings in computer time compared to multi-slice approaches where all 
the beams reaching the detector are calculated even if they eventually sum to zero.  The 
detector sum is given by 

 
 Cjk(K) = ∫ D(Kf) bKf

j(K)bKf
k*(K) dKf (38) 

 
and acts on the Bloch states as a high pass filter in the same way as it selected the high 
frequency components of the atomic potential in section 3.4.2.   
 
3.6.3. The High Thickness Limit 

The efficiency of the Bloch wave filtering is seen very clearly in the limit of high 
thickness where the cross terms Cjk become insignificant compared to the independent 
terms Cjj because of the exponential factor in Eqn. 37.  Figure 19 shows the 
contribution to the object function of the two 1s states in GaAs compared to the object 
function calculated with all 265 states. These other states add just a small, almost 
uniform background intensity to the object function.  A similar conclusion had been 
reached by Pennycook and Jesson (1990, 1991, 1992) assuming the image to be given 
by the intensity at the atom sites.  Although the intensity at the sites is dominated by the 
1s states, this approach is equivalent to setting D(Kf) = 1 above.  Using the full detector 
function results in even more perfect 1s state filtering.  

The image intensity, Eqn. 37, is now given by 
 

 I(ρ ,z) = ∫ A(K)A*(K+ρ)
j,k
! Cjk(K)εj(K)εk*(K+ρ)e-i[kz

j(K)-kz
k(K)]zdK, (39) 

which, since the dominant contribution at high thickness is the 1s states, we can 
approximate as 
 
 I(ρ) = ∫ A(K)A*(K+ρ)

1s
! Cjjε

j(K)εj*(K+ρ)dK. (40) 

 
Here we have removed the K dependence of the Cjj term, as the s states are non-
dispersive.  Also, since the excitation of a Bloch state is its Fourier transform, for the 



highly localized s states the excitation is also quite a slowly varying function over the 
objective aperture range, and can therefore be replaced by an average excitation 

 
Figure 19.  Contributions to the image intensity in GaAs (110) from (a) the 1s Bloch state on the As column, 
(b) the Ga 1s state, (c) both Ga and As 1s states, (d) all 265 states, showing the effectiveness of the high angle 
detector as a Bloch state filter. 
  
 εav = ∫ε1s(K) dK (41) 
 
Now the only K dependence is in the aperture function, and we again have incoherent 
imaging.  Transforming back to real space, the Fourier transform of the aperture 
functions gives the probe intensity profile.  With the excitation slowly varying, we can 
approximate the dynamical object function in the high thickness limit as a set of 
weighted δ-functions.  The image is then given by 
 

 I(R0) = Cjj ε
av2

δ(Rj)* P2(R0), (42) 
 
where Rj is the coordinate of column j.  For constant atom separation along a column, 
the high angle components of the 1s states (Cjj) scale as Z2, as would be expected on the 
basis of Rutherford scattering.  The excitation on axis, ε1s2(0), goes as 1/Z, but as states 
from lighter columns are broader, their excitation falls off faster with K.  The two 
factors largely cancel, and so, in the high thickness limit, we find the dynamical object 
function is only slightly less than Z2.  In this limit we therefore see practically the same 
contrast in the presence of dynamical diffraction as we would for single atoms. 
 



 
 
3.6.4. Channeling Approximation 

If we are not at the high thickness limit described above, we expect dynamical 
oscillations with depth z due to the exponential term in Eqn. 29.  Although the 1s states 
have by far the largest single Cjj value, not all of the incident beam can be coupled into 
the s states.  Depth dependent oscillations come from the beating of the 1s states with 
the sum of all the other states.  As noted before, the 1s states are located over the 
deepest part of the projected potential and so have the highest kinetic energy and the 
largest kz

j.  All the other less localised states have very similar kz
j values, and so in thin 

crystals they all propagate approximately in phase through the thickness z.  Therefore it 
is a good approximation to consider just two components to the electron wave function, 
the 1s state propagating with wavevector kz

1s, and a term  
1- b1s(R) propagating at an average kz

0.  The beating between these two components 
occurs with an extinction distance ξ = 2π/( kz

1s - kz
0).  Replacing the cjj term by Z2, the 

depth dependent object function for a column is now given by 
 

 OC(R,z) = Z2εav2
[1 - cos(2πz/ξ)] e-2µ1s(0)z (43) 

 
where we have included absorption, as the 1s states are the most highly absorbed Bloch 
states.  Figure 20 shows a plot of this function for Si and Ge in the 〈110〉 orientation, 
compared to the 1s state intensities alone.  

This expression assumes all scattering is coherent.  Experimental images do not 
show these strong depth oscillations because most of the scattering reaching the 
detector is thermal diffuse scattering.  We are detecting the absorption out of the 
coherent wavefield described by Eqn. 43.  The phonons are again breaking the z-
coherence  and allowing us to integrate the generation of high angle diffuse scattering  
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Figure 20.  Intensity of coherent scattering reaching 
the annular detector from Si and Ge 〈110〉 using the 
channeling approximation, Eqn. 42.  Parameters are: 
Si, ξ=300Å, µ1s = 0.00048, Ge,  
ξ = 169 Å, µ1s = 0.00032. 

Figure 21.  Intensity of incoherent scattering 
reaching the annular detector from Si and Ge 
〈110〉 using the channeling approximation, Eqn. 
43.  Parameters are the same as Fig. 20. 
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over the thickness t of the crystal.  Integrating Eqn. 43 gives 

 

OTDS(R,t) = 

 

Z 2! av2
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   (44) 
 
which is plotted in Fig. 21.  The thickness integration has removed the strong 
dynamical oscillations and the form of the curve is in good agreement with both 
experimental observations and with multislice simulations for a high detection angle 
(Loane, Xu and Silcox, 1992, Anderson, et. al., 1997, Hartel, Rose and Dinges 1996).  
Under these conditions, the channeling approximation is very useful for simulating 
images, and saves enormously on computer time.  For lower detection angles the other 
states become more important, and a fraction of the coherent exit face wave function 
OC(R,t) must be added.  The image contrast begins to show more oscillatory 
dependence on thickness and the incoherent characteristics are progressively lost.  
Also, single heavy impurity atoms will sample the oscillating wavefield of Fig. 20, and 
so show depth dependent contrast (Loane, Kirkland and Silcox, 1988, Nakamura et al., 
1997). 

Another important situation where other states become significant is if the atomic 
columns are no longer straight, but bent due to the presence of a defect or impurity.  
Then transitions occur between Bloch states which is the origin of diffraction contrast 
imaging in the CTEM, and diffraction contrast effects will also be seen in the annular 
detector signal, as discussed below. 
 
3.7. STRAIN CONTRAST 

Elastic strain fields due to impurities, point defects or extended defects such as 
dislocations and stacking faults will induce transitions into or out of the 1s Bloch states.  
This is the usual mechanism of diffraction contrast in CTEM images, and clearly, will 
also be a source of contrast in the annular detector image.  In general, transitions will 
again depend on depth in the crystal, giving oscillatory contrast from  
 

 
Figure 22. (a) Bright field and (b) annular dark field STEM images of inclined dislocations in a thick 
Si/Si(B) superlattice  



 
inclined dislocations, as seen in Fig. 22 (Perovic, Rossouw and Howie, 1993, Perovic, 
Howie and Rossouw, 1993).  For zone axis imaging, the periodicity will be the 
extinction length ξ as seen in Fig. 20.  Even dislocations that are viewed end-on may 
show strain contrast due to the transverse relaxations of the atomic positions that occur 
near the sample surface.  For this reason, grain boundaries, which are closely spaced 
arrays of dislocations, often appear brighter or darker than the matrix.  Strain contrast is 
relatively long range compared to the lattice parameter and can be removed by Fourier 
filtering if desired.  Strain contrast also depends strongly on detector angle, and can 
therefore be distinguished from compositional changes (Z-contrast) by comparing 
images taken with different inner detector angles, as shown below. 

From our discussion of z-coherence, and its destruction by phonons, it is clear that 
static transverse displacements comparable to the atomic vibration amplitude will also 
significantly affect the scattering at high angles.  In the Einstein model of thermal 
vibrations, atomic scattering cross sections can be defined for coherent and incoherent 
scattering.  The coherent scattering is reduced by the Debye-Waller factor M = 8!2 uT2 , 
where uT2  is the mean square thermal vibration amplitude of the atom (Hall and Hirsch, 
1965), and is given by 
 

 σc  =  f 2 e!2Ms
2

,  (45) 
 

where f is the atomic form factor and s = (sinθB/λ) is the scattering angle. The 
incoherent cross section is then 

 
 σTDS  =  f 2 1! e!2Ms

2( ) .  (46) 
 
 In the presence of static random atomic displacements, assuming a Gaussian 

distribution of strain with a mean square static displacement of uS2 , the atomic scattering 
cross section will be modified to (Hall, Hirsch and Booker, 1966) 
 
 σS  =  f 2 1 ! e!2 M+MS( )s2" 

# 
$ 
% .  (47) 

 
where Ms = 8π2

uS
2 .  It is clear from the form of these expressions that at a sufficiently 

high scattering angle σc tends to zero and both σTDS and σS tend to the full atomic 
scattering cross section f 2.  In other words no additional scattering due to strain will 
occur.  At lower angles where the Debye-Waller factor is significant, static strains 
comparable to the thermal vibration amplitude may lead to a significantly enhanced 
scattering cross section.   

Figure 23 shows images of a thermally grown Si/SiO2 interface.  The bright field 
phase contrast image, Fig. 23a, shows dark contrast that could be due to a number of 
effects, such as strain, thickness variation, bending of the crystal or a combination of 
these mechanisms.  Figure 23b shows an incoherent dark field image collected 
simultaneously using a low (25 mrad) inner radius for the annular detector.  Now there 



is a bright band near the interface indicating additional scattering.  With this image 
alone, this additional scattering could be due either to strain or to the presence of some 
heavy impurity atoms.  However, when the inner detector angle is increased further to 
45 mrad the bright line disappears (Fig. 23c), showing that the contrast cannot be due to 
the presence of heavy impurity atoms which would still give increased scattering.  The 
contrast must therefore be due to a static strain effect.  Intensity profiles across the two 
dark field images are shown in Fig. 24.  Taking their ratio normalizes any change in the 
s states due to the strain and allows the additional static displacement to be calculated, 
as shown in Fig. 25 (Duscher et al., 1998).  This is seen to decrease exponentially from 
the incoherent interface as would be expected for a uniform array of misfit dislocations.  

 

 
Figure 23. STEM images of a Si/SiO2 interface; (a) bright field phase contrast image, (b) Z-contrast image 
with 25 mrad inner detector angle showing strain contrast, (c) Z-contrast image with 45 mrad inner detector 
angle.  The horizontal line marks the last Si plane used for strain profiling. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24. Intensity profiles across the Z-contrast 
images of Fig. 23.  The high angle profile shows 
the dechanneling effect near the interface which 
can be used to normalise the profile obtained with 
lower detector angle. 

Figure 25. RMS atomic displacement due to 
static strain induced by the Si/SiO2 interface and 
an exponential decay fitted to the data. 
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4. Retrieval of the Object Function 

The key advantage of an incoherent image is avoidance of the phase problem 
associated with coherent imaging.  As there are no phases in an incoherent image, no 
phase information can be lost, and we have the possibility of direct inversion from the 
image back to the object.  This of course is the reason that an incoherent image can be 
interpreted intuitively.  All that is lost in recording the incoherent image is information 
on the high spatial frequencies in the object, lost because of the convolution with a 
probe of finite width.  It might naturally be assumed that to retrieve the object, all that 
would be required would be to deconvolute the probe from the image.  But 
unfortunately this does not work, because it does not retrieve the lost high frequency 
information.  All deconvolution can do is to correct for the decaying transfer function 
t(ρ) by dividing in Fourier space, 

 

 O(ρ) = 
I !( )
t !( ) . (48) 

 
This fails as the transfer function approaches zero, and in the Wiener filter method the 
object frequency is decayed to zero at the cutoff of the transfer function by the addition 
of a small constant ε 
 

 O(ρ) = 
t * !( )I !( )
t !( ) 2 + "

. (49) 

 
 The results of such a Wiener filter deconvolution are shown in Fig. 26.  A raw 

image of Si〈110〉 is shown in (a) (Nellist and Pennycook, 1998b).  The result of a 
simple Fourier filter to remove the noise is seen in (b), and the effect of the Wiener 
filter is shown in (c).  Unfortunately, the effect of the filter is to produce artifacts 
between the columns.  These arise because of the abrupt cutoff in transfer imposed near 
the maximum spatial frequency of the data.  To avoid such artifacts, a slower cutoff can 
be imposed on the image but obviously this would also degrade the resolution.  In fact, 
the natural incoherent transfer function is already rather well optimized, and it is not 
useful to attempt to improve upon it in this way.  

An alternative method is required to reconstruct the missing high frequency 
information.  For atoms wide apart, it is reasonable to locate the maximum of each 
image feature, which is using our a priori information that the sample comprises 
discrete atoms.  But this procedure does not work near the limit of resolution because it 
does not take any account of the probe profile.  In Si〈110〉, pairs of columns are spaced 
by distances comparable to the probe size, and the peak image intensity is displaced 
outwards by a few tenths of an angstrom depending on defocus.  A method to 
accurately account for the effects of the convolution is maximum entropy (Gull and 
Skilling, 1984).  This assumes no prior knowledge concerning the nature of the image, 
except that it is incoherent.   

 



 
Figure 26. (a) Raw Z-contrast image of Si 〈110〉; (b) low pass filtered image to reduce noise; (c) 
deconvolution of the probe function leads to artifacts between the columns; (d) maximum entropy retrieves 
the correct object giving a reconstructed image free of artifacts. 

 
The maximum entropy method is based on Bayes theorem, which states that  
 

 p(a ⎢b) p(b) = p(b ⎢a) p(a) (50) 
 

that is p(a ⎢b), the probability of a given b, multiplied by the probability of b is equal to 
the probability of b given a, multiplied by the probability of a.  For our case we know 
the image data and suppose we also know the probe function, or we pick a trial probe 
function.  We then need to be able to assess the probability of different trial object 
functions.  So we write 
 
 p(object function ⎢image data) p(image data) = p(image data ⎢object function)  
                  p(object function).  (51) 
 
Now the probability of the image data is a constant (we are tying to assess the most 
likely object from a given image), and so we have 



 
 p(object function ⎢image data)  = k p(image data  ⎢object function) p(object function)  
  (52) 

where k is a constant.  As we know the probe profile we can convolute it with our trial 
object function and compute the probability of the image data given our simulated 
image using a χ2 fit for example.  All we need is an expression for p(object function), a 
means of assessing the probability of different object functions.  Because any 
distribution of high spatial frequencies beyond our image cutoff will give equally good 
fits to the data, there are an infinite number of possible object functions that will give 
the same simulated image, and therefore the same value of p(image data  ⎢ object 
function).  It is the function of the prior distribution function, p(object function), to 
assess the one which is the most likely.  Maximum entropy weights different object 
functions according to 
 

 p(object function) = eαS (53) 
 
where α is a constant and S is the entropy, given by 
 
 S = -

i
! ni log ni (54) 

where ni is the value of pixel i in the object function.  The maximum entropy prior 
weights in the direction of least structure (maximum disorder).  It will not give three 
columns where two would do, and is therefore a convenient prior for atomic resolution 
imaging.  Note that nowhere do we assume that the object is comprised of discrete 
atoms. 

 
Figure 27.  (a) Z-contrast image of an end-on threading dislocation in a GaN thin film grown on sapphire, 
viewed along the 〈0001〉 direction.  The eight-fold structure of the core is clear from the maximum entropy 
reconstruction (b). 



Figure 26d shows the reconstructed Si〈110〉 image, obtained by convoluting the 
maximum entropy object with the probe profile, where the artifacts between the 
columns are no longer present.  Figure 27 shows a raw image of an end on dislocation 
core in GaN, with the atomic structure of the core determined by maximum entropy 
(Xin et al., 1998).  In a good reconstruction, the maximum entropy object function 
consists of fine points, which can be taken directly as the column coordinates.  The 
accuracy of the method is easily checked by measuring spacings far from the 
dislocation core, and here, as found typically, is approximately ± 0.1 Å for individual 
columns.  More detailed descriptions of the maximum entropy approach applied to Z-
contrast images, its accuracy and comparison with alternative schemes, are given in 
McGibbon, Pennycook and Jesson, 1998, Nellist and Pennycook, 1998b.  

 
5. Atomic Resolution Spectroscopy 

The Z-contrast image uses only the high angle scattering, this leaves the lower angles 
available for electron energy loss spectroscopy (EELS).  Indeed, it is the availability of 
the incoherent Z-contrast image that allows the probe to be located over a selected 
individual atomic column or plane with very high precision.  The probe can be centered 
over a chosen column just by maximising the annular detector intensity.  Provided that 
incoherent imaging conditions also apply to the EELS signal, the inelastic scattering 
from that column will also be maximised at the same probe position, giving an atom 
column resolved analysis (Browning, Chisholm and Pennycook, 1993, Batson, 1993, 
Browning and Pennycook, 1995). 

With the phase contrast image of a CTEM it is not so simple to accurately 
illuminate an individual column.  Neither is it practical to form an energy filtered image 
at atomic resolution except from low loss electrons.  In CTEM the objective lens is 
behind the specimen (Fig. 3a), so that the energy-loss electrons will suffer chromatic 
aberration on passing through the lens to form an image.  For the energy filtered image 
to show atomic resolution, the energy window selected by the filter must be kept below 
1 eV, which for core edges will lead to a very noisy image.  The information is more 
efficiently gathered in STEM mode by illuminating the chosen column, and collecting 
the transmission EELS spectrum.  Chromatic aberration in the objective lens no longer 
degrades the spatial resolution.  The simultaneous use of atomic resolution imaging and 
analysis in the STEM has proved to be a powerful means for determining atomic 
structure, atomic sites of impurity atoms and their valence, and the local band structure 
seen by the selected column.  In principle, atomic resolution is also possible using X-
ray fluorescence, but to date it has been demonstrated only for EELS, because of the 
much lower detection efficiency for X-rays. 

Much of the discussion on incoherent imaging with elastically scattered electrons 
can be carried over to the case of inelastically scattered electrons (Pennycook et al. 
1997).  For example, it has been realized for some time that collecting all the 
inelastically scattered electrons will give an incoherent image (Rose, 1976, Ritchie and 
Howie, 1988).  The inelastic object function is given by 
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where the momentum transfer is now three-dimensional, q = (K,qz), because of the 
minimum momentum transfer qz at zero scattering angle.  ρno is the transition matrix 
element from an initial state |0〉 to a final state |n〉 and v is the electron velocity.  These 
are often evaluated in the hydrogenic approximation (Maslen and Rossouw, 1984, 
Rossouw and Maslen, 1984, Allen, 1993, Holbrook and Bird, 1995, Pennycook et 
al.,1997, Rafferty and Pennycook, 1998).   

Inelastic object functions are 
significantly broader than elastic 
object functions, due not so 
much to the size of the inner 
shell itself, but to the fact that 
less transverse momentum is 
available from the light electron 
compared to the heavy nucleus.  
The full-width-half-maxima for 
several elements are shown in 
Fig. 28, and are below 1 Å even 
for the light elements, suggesting 
atomic resolution will still be 
possible with a suitably small 
probe.  For considerations of 
contrast, one can think of the 
image as given by an effective 
probe convoluted with delta 
functions, as in the elastic case.  
The effective probe is now the 
real probe convoluted with the inelastic object function, P2

eff(R) = P2(R)*O′(R) which 
is equivalent to a transfer function t'(ρ) = t(ρ)Ο'(ρ).  

To show that spectroscopy can be performed on individual  atomic columns selected 
from the Z-contrast image, Fig. 29 shows an example of a Mn-doped SrTiO3 grain 
boundary.   Significant changes in both concentration and band structure are observed 
from column to column (Duscher, Browning and Pennycook, 1998).  The Mn is seen to 
prefer the Ti sites in the grain boundary, and from the Ti LII/III ratio, appears to change 
its valence state from 4+ in the bulk to 3+ at the boundary.  Data of this nature is 
particularly valuable for linking the structure of the grain boundary to its electrical 
activity.  However, the images shown here were taken on the 300 kV STEM whereas 
the EELS spectra were taken on the 100 kV STEM, with only a 2.2 Å probe size. This 
is apparent in the fact that even with the probe located over the Sr columns, which do 
not themselves contain O, a strong O edge is observed from the four O columns only 
1.95 Å away. 

 

Figure 28. Full-width-half-maxima of EELS 
object functions for K-shell excitations by 300 kV 
incident electrons, calculated in the hydrogenic 
model 
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Figure 29.  Z-contrast image of a Mn-doped SrTiO3 grain boundary with EELS spectra obtained from 
selected atomic columns. 
 

A more detailed discussion of atomic 
resolution EELS and comparison to the 
spatial difference method is given in 
Duscher, Browning and Pennycook, 1998.  
EELS is particularly useful for analyzing 
elements such as oxygen which are too 
light to be seen directly in the Z-contrast 
image (McGibbon et al., 1994, Dickey et 
al., 1998).  It has been used for example 
to map hole concentrations in the high 
temperature superconductors at a spatial 
resolution below the superconducting 
coherence length.  Significant differences 
were found at grain boundaries depending 
on boundary geometry (Browning et al., 
1993, 1998).  

EELS is also useful at an amorphous crystal interface, where it can provide valuable 
information on the composition of the amorphous phase near the interface.  Figure 30 
shows a series of Si-L2,3 ionization edges from a Si/SiO2 interface produced by 
oxidation with a gaseous oxygen/nitrogen source (Duscher et al., 1998).  Each spectrum 
is obtained with the probe located at a different distance from the interface, as 
determined from the Z-contrast image.  Due to the large band gap of the SiO2, the onset 
of the ionization edge is 104 eV in the SiO2 compared to 99 eV in the Si.  It is clear that 
the edge profile evolves from Si to SiO2 over a surprisingly extended region, greater 
than 2 nm.  This is almost an order of magnitude greater than the spatial resolution of 
the measurement.  Similar data was obtained from the O-K edge, providing an 
independent verification of an extended sub-stoichiometric zone. 

Figure 30.  Si-L2,3 spectra across a Si/SiO2 
interface showing evolution of the SiO2 band 
gap.  The full gap is not established until 2.4 
nm into the oxide. 
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6. Applications in Materials Science 

Theoretical modeling is a valuable complement to these techniques of atomic scale 
characterization.   It can choose between different models that agree with the image, 
models that differ in their arrangement in the z-direction for example.  In particular, 
first-principles total energy calculations can take the coordinates provided by the image 
and relax them in a fully self consistent manner, thereby testing if the proposed 
structure is stable, and avoiding the need for increasing the accuracy of the image 
inversion.  The final total energy can be used to determine grain boundary energies, 
segregation energies and transformation energies for example.  Following relaxation, 
the electron distribution within the structure is known, from which all properties can in 
principle be derived and compared to experiment.  This combination of Z-contrast 
imaging, EELS and theory is highly synergistic; by providing atomic coordinates from 
experiment we avoid the need for time-consuming searches  of trial model structures 
with the computer.  Theory, in turn, often suggests new directions for experiment.  
Below are two recent examples of combined experimental and theoretical studies, and 
some additional recent experimental studies. 

 
6.1. ARSENIC SEGREGATION SITES AT A SILICON GRAIN BOUNDARY 

Z-contrast imaging enables low concentrations of high-Z impurities to be observed 
directly, as shown in Fig. 31, a Z-contrast image of a grain boundary in Si, after doping 
with As (Chisholm et al., 1998).  The atomic structure of the boundary is directly 
determined from the positions of the bright features in the image, and is different from 
all structures proposed previously.  It comprises a continuous sequence of dislocation 
cores, a perfect edge dislocation (1) and two perfect mixed dislocations (2,3) arranged 
as a dipole, followed by the same sequence (1',2',3') mirrored across the boundary 
plane.  In the 〈001〉 projection, these dislocations appear as a connected array of 
pentagonal and triangular arrangements of atomic columns.  One of the dislocation 
cores contains columns that are 20% brighter on average than other similar columns, 
indicating the presence of As atoms.  The increased intensity corresponds to an average 
of only 5% As concentration, approximately two As atoms in each atomic column. 

Ab-initio theoretical studies added significant further insight.  It was found that 
isolated As atoms have only a small segregation energy of ~ 0.1 eV in all the 
dislocation cores, not showing preference for any site in the boundary.  Arsenic dimers, 
on the other hand, were found to have a substantial segregation energy (Maiti et al., 
1996).  Most significantly, with a dilute concentration of As dimers, preference was 
found for those sites seen bright in the image, with the segregation energy being 
consistent with the As solubility limit in the bulk at the 700˚C annealing temperature.  
A remarkably detailed and consistent atomic-scale picture of impurity segregation has 
been achieved for this grain boundary. 
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Figure 31.  Z-contrast image of a 23˚ [001] tilt grain boundary in Si showing its unexpectedly complex 
structure.  The five-fold rings (with black centers in the image) are dislocation cores arranged in a repeating 
sequence along the boundary.  Columns shown black in the schematic are those seen brighter in the image 
due to segregated As. 
 
 
6.2. IMPURITY-INDUCED GRAIN BOUNDARY TRANSFORMATION IN 

MgO 

In Fig. 32, STEM imaging of an MgO grain boundary (Yan et al., 1998a) reveals a 
structure that is inconsistent with the widely accepted structure of the boundary 
proposed by Harris et al. (1996) based on theoretical modelling using classical 
potentials.  The observed structure is similar to that proposed much earlier by Kingery 
(1974).  These two structures are compared in Fig. 32, where the large empty core of 
the Harris structure is obviously very different from the more dense core of the Kingery 
model.  On careful examination of the intensity in the experimental image, it can be 
seen that certain specific atomic columns at the grain boundary are significantly 
brighter than neighboring columns, as arrowed in the figure.  This suggests that 
impurities, with Z > 12, may be segregated at these sites.  EELS measurements indeed 
established that significant concentrations of Ca were present in the grain boundary, 0.3 
monolayers, consistent with the bright intensity in the image. 

To reconcile these observations with the prior experimental and theoretical work, 
first-principles theoretical calculations were performed.  These calculations in fact 
reproduced the results of the classical potential calculations for the clean grain 
boundary, indicating the open structure to be 0.5 eV lower in energy per periodic repeat 
unit.  Theory further determined that Ca has a large segregation energy in both 
boundary structures, but significantly higher in the dense structure, sufficient to make 
the dense structure the lower energy boundary.  These calculations therefore established 
that the dense structure is in fact stabilized by the Ca segregation, an example of a 
segregation induced structural transformation.  Examination of the electronic charge 
distribution revealed just a small perturbation to the oxygen ions next to the Ca atom, 
indicating the transformation is structural not electronic in origin, i.e. it is driven by the 
size difference between Ca and Mg ions. 
 
 



 
Figure 32.  Z-contrast image from a 24˚ 〈001〉 tilt grain boundary in MgO showing occasional bright atomic 
columns at the grain boundary (arrowed), compared to two structures for the 36˚ 〈001〉 tilt grain boundary 
proposed by (a) Kingery (1974) and (b) Harris et al. (1996).  Sites of Ca segregation are arrowed. 
 
6.3. ORDERING IN FERROELECTRIC PEROVSKITES 

Z-contrast imaging (Yan et al., 1998b) has resolved a controversy over the ordered 
structure of the lead-based relaxor ferroelectric Pb(Mg1/3Nb2/3)O3 (PMN).  Two 
models have been proposed, the space-charge model and the charge-balanced random-
layer model (Chen, Chan and Harmer, 1989) which differ in the distribution of the B-
site cations in the doubled unit cell.  In the space-charge model, the BI and BII sites are 
occupied exclusively by the Mg2+ and Nb5+ cations, respectively, in the form 
Pb(Mg1/2Nb1/2)O3.  The resulting net negative charge is assumed compensated by a 
disordered, Nb5+ rich matrix.  In the charge-balanced random-layer model, microscopic 
charge balance is achieved by occupying the BII columns exclusively by Nb5+ and the 
BI columns with a random distribution of Mg2+ and Nb5+ in a 2:1 ratio.  Z-contrast 
imaging along the [110] zone axis can easily distinguish these two cases.   In the space 
charge structure, the ratio of BI column (Mg) to BII column (Nb) intensities is given by 
approximately  1/17, whereas, in the charge-balanced random-layer structure it is close 
to 1/4.   

Figure 33a shows a Z-contrast image of 25% La-doped PMN.  The La doping 
increases the grain size significantly, ensuring that a single domain exists throughout 
the thickness of the region imaged.  The intensity trace taken through the B sublattice 
clearly shows the intensity ratio is consistent with the 1/4 value expected for the 
charge-balanced random-layer model.  For comparison,  Fig 33b shows an image and 
line trace from Ba(Mg1/3Nb2/3)O3 in which the B sites are fully occupied by either Mg 
or Nb in a 2:1 ratio.  The line trace shows the expected very weak intensity from the 
Mg column.  A somewhat higher intensity is observed from the Mg site on the left hand 
side, indicating that the ordering is not entirely complete.   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 33.  Z-contrast images of (a) 25% La-doped Pb(Mg1/3Nb2/3)O3, (b) Ba(Mg1/3Nb2/3)O3 with 
intensity profiles across the B sublattice showing the PMN to have the charge-balanced random layer 
structure. 
 

Images were also taken from thin, undoped PMN.  Although the contrast was often 
reduced due to the overlap of small domains through the sample thickness, the 
maximum value seen was still 1/4.  This indicates that the ordered structure of undoped 
PMN also follows the charge-balanced random-layer model. 

 
6.4. COMPLEX ATOMIC STRUCTURE OF In2O3-ZnO CONDUCTING FILMS 

Z-contrast imaging of the transparent conducting oxide In2O3(ZnO)k has revealed a 
surprisingly complex atomic structure, containing inversion and mirror domain 
boundaries as an integral part of the structure (Yan et al., 1998c).   In and Zn columns 
are directly distinguishable in a Z-contrast image taken along the [1120 ] zone axis.  
Figure 34 shows an image of a layered structure observed in a film with nominal 
composition In2O3(ZnO)2, after annealing at 900 °C for six hours in 20% argon 80% 
oxygen at 3.5 Torr.  About 50 % of all grains were found to have this layered 
structure.  It is immediately clear that each In intergrowth layer (seen bright) consists of 
only a single layer of In atoms, inconsistent with the model proposed by Cannard and 
Tilley (1988) in which two {111} planes of cubic In2O3 were suggested.  Additionally, 
the distance between two adjacent In-O layers varies between 4, 5 or 6 layers of (0002) 
ZnO.  This is evidence of a polytypoid structure, with an average composition obtained 
from the image of In2O3(ZnO)10.   

Furthermore, the spacing between the In plane and its nearest Zn planes, denoted 
d1, is measured to be approximately 0.31 nm, which is significantly larger than the Zn 
(0002) interplanar spacing of 0.26 nm, denoted by d2. This unexpected spacing 
strongly suggests that the single In layer is in fact an In-O octahedral layer, a result 



confirmed by EELS.  The oxygen octahedra are oriented in such a way that the O and 
Zn layers form the regular wurtzite ZnO structure.  The polarity of the ZnO slabs either 
side of the In-O octahedral layer must therefore be opposite, so that the In-O layer is 
acting as an inversion domain boundary (IDB).  In between the In-O layers is another 
polarity reversal, a mirror domain boundary (MDB) where Zn atoms form a rectangular 
pattern.  It is clear that the microstructure of annealed transparent In2O3-ZnO contains 
closely spaced inversion and mirror domain boundaries as an integral part of its 
structure. 
 

 
Figure 34.  (a) Z-contrast image of an In2O3-ZnO film taken along the [1120 ] zone axis showing a 
polytypoid structure with an average composition of In2O3(ZnO)10.  (b) structure deduced from the measured 
cation positions.  The single In layer is an In-O octahedral layer inducing an inversion domain boundary 
(IDB) in the adjacent ZnO layers, which is reversed by the mirror domain boundary (MDB).  Large circles 
denote cations, small circles O, white and black denote different heights. 
 
 
7. Future Directions 

If you consider that the wavelength of a 300 kV electron is less than 0.02 Å, then 
our achievement of resolutions of 1.3 Å would seem rather poor.  Of course, this is due 
to the enormously large aberrations of the electron lenses which limit the usable 
apertures to only 10 mrad or so, about half a degree.  It has been realized for decades 
that correction of the spherical aberration would bring great benefits in resolution, and 
there have been numerous proposals and attempts over the years (Hawkes, 1997, 



Dellby, Krivanek and Lupini, 1998).  Correctors must resort to elements with non-
cylindrical symmetry, and are optically rather complex.  Only recently therefore, due in 
large part to the advent of the computer, have systems been developed with the 
capability for precise alignment and the necessary stability.  Again the STEM appears 
to have a significant advantage, in that the objective lens is before the sample and we 
avoid problems with chromatic aberration due to electrons having lost energy in the 
specimen.  Indeed, as the STEM image contrast comes only from overlaps between 
neighboring illumination discs (see Fig. 12), there is a line down the center of each 
overlap region that is achromatic, where the path from each disc passes at equal angles 
through the objective lens.  The STEM annular detector image is therefore much more 
robust towards chromatic aberration effects such as energy spread and fluctuations in 
objective lens current than the axial phase contrast image (Nellist and Pennycook, 
1998c).  Because of the rapidly oscillating phase contrast transfer function, such 
fluctuations lead to an exponential damping envelope, and the so-called information 
limit is much reduced compared to incoherent imaging. 

An example of the anticipated improvement in probe profile is seen in Fig. 35,  Not 
only is the central peak significantly sharpened to a FWHM of 0.5 Å, but the extended 
probe tails have largely been eliminated.  It is precisely these extended tails that were 
responsible for the intensity 
seen between the dumbbells 
in the raw image of Si 〈110〉 
(Fig 26).  For analysis such 
tails are equally undesirable; 
with a probe located over a 
selected column, the tails may 
put a significant fraction of 
the total probe current down 
neighboring columns. 

It is clear that if such 
devices are realized in 
practice then imaging and 
analysis will benefit 
enormously from the 
increased sensitivity.  It is not 
so much the additional 
spacings that will become 
available, it is that we will be 
able to image and analyze all 
materials with single atomic 
column sensitivity.  By 
increasing the current down 
our selected column, and 
simultaneously decreasing the 
current illuminating 
surrounding columns, we will 
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Figure 35.  Improvement in probe profile anticipated for the 
HB603U STEM by correction of spherical aberration.  Upper 
panel shows probe profile and image for our present system, 
lower panel shows the effect of Cs correction.  The integrated 
intensity in the two probes is equal, but the central peak of the 
corrected probe is seven times greater.  (Courtesy O. Krivanek). 



enormously improve the image contrast and the analytical sensitivity.  It will be 
possible to image oxygen columns in the high Tc superconductors, and place the probe 
over a selected oxygen column to measure local hole concentration.  The range of 
catalyst atoms and clusters visible on the surface of γ-alumina will be greatly extended.  
It will become possible to image and analyze single impurity atoms in specific columns 
at a grain boundary or dislocation core, and to see the effect on local electronic 
structure.  Indeed we appear to be on the threshold of finally understanding the atomic 
origins of materials properties. 
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