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A method to measure the aberration function for a crystalline specimen

Abstract

from a single inline hologram or ‘Ronchigram’ by dividing it up into small
patches is derived. Measurement of aberrations is demonstrated from
both dynamical simulations and experimental Ronchigrams. This method
should allow rapid fine-tuning on a variety of crystalline specimens and
represents a key step toward active optics for scanning transmission elec-

tron microscopy.

Since the proof by Scherzer that the spherical (C;) and
chromatic (C.) aberrations of round electron lenses are
unavoidable [1] there have been considerable efforts to
correct these aberrations using non-round elements, with
notable recent successes [2,3]. Unfortunately, the measure-
ment of aberrations, which forms an important part of align-
ing these non-round elements, is still many times slower
than methods used in the related fields of active or adaptive
optics [4]. The main aberration measurement algorithms
presently used work poorly, if at all, for crystalline samples
and instead require either a relatively amorphous region or a
special tuning sample [5-8]. Most of these existing methods
require multiple images, which can take a substantial time
to acquire, imposing great demands on instrument stability.
The ability to measure aberrations quickly at the same area
used for imaging on crystalline samples would offer several
potential benefits, including higher accuracy, less sensitivity
to drift and perhaps the ability to monitor or dynamically
correct aberrations during an image series.

The arrangement shown in Fig. 1 is essentially the config-
uration proposed by Gabor to overcome spherical aberration
by forming an inline hologram [9]. An objective lens is used
to focus a beam of electrons near the plane of a thin sample.
The transmitted shadow image, also known as the Ronchi-
gram [10], is often used to adjust a scanning transmission
electron microscope (STEM) [11-15].

To give a concise description of the Ronchigram, we make
the normal approximations (e.g. [16]) that after the probe
has interacted with a thin sample W , the transmitted wave-
function will be the product of the incident probe and a sam-
ple function. Thus, the intensity I recorded at the detector
plane as a function of detection wavevector Ky and probe

position Ry will be (the intensity of) the convolution of
the aperture function and the diffraction pattern. Expressed
mathematically, such a Ronchigram can be written as

= ff

2’” (KK f —K;) =X (K ; —K))+27iRo (K— K,)deK (1)
where X is the wavelength, K and K; are incident wavevec-
tors and the aberration function y is a function of angle, as
given in reference [6].

We first model the Ronchigram of a crystalline material as
having two delta-function diffraction spots at angles g and
h with amplitudes a. Substituting this sample into (1), per-
forming the integral and neglecting constant terms, gives the
intensity in the overlap region as

I1(Ky, Ry) = 2a* cos(2n (A 'x(K; — h)
—2"'x(K; — 8) + Ro.(g — h))). (2)

The resulting sinusoidal fringes depend on the aberrations,
which may be inferred from the fringe spacings [11, 17-23].

Adding more diffracted beams will give additional inter-
ference effects. To reduce the notation we ignore the phase
change from the sample, which depends on factors such as
thickness (reference [11] used ia, which changes the co-
sine to a sine), and probe position. Setting the on-axis beam
intensity to unity gives the three-beam pattern as

I(Ky, Rg) = 2a cos(2mh™" (x (Kf) — x(K; — 8)))
+2a cos(2mh " (X (Kr — h) — x (Kr)))
+2a* cos2mh ! (x (Ky—h)—x (K;—g))). (3)



196 JOURNAL OF ELECTRON MICROSCOPY, Vol. 57, No. 6, 2008

f R tk

Incident
beam
Objective Sample N
Lens
Detector
plane
Aperture

Fig. 1. A simplified schematic of the formation of an electron
Ronchigram. An incident beam (left) is focused near to the sample
(center) and the shadow image recorded in the far field (right).

Rearranging this equation and neglecting the weaker
terms in a?, which is a good approximation in a thin crys-
tal, gives

1Ky, Rg) = dacos(mh " (x(K; —h) — x(K; —g)))
x cos(mh~ (2% (Ky) — x (Kf — g) — x(K; —h))).
(4)

The expressions for multiple beams follow in a similar
way. We conclude that the three-beam case is essentially the
two-beam result (a discrete first difference) modulated by
an additional term (a discrete second difference). This extra
term, shown by Lin and Cowley [11], can make the fringes
vanish; however, the fringes rarely cancel completely over
a large area and then the focus can be changed slightly to
avoid this condition.

Fourier transforms are often used to measure fringe spac-
ings, since a constant spacing gives two delta functions.
Boothroyd has demonstrated that the Fourier transform of
the Ronchigram can be used to provide quantitative infor-
mation about the aberrations [18]. However, the difficulty is
that the spacings change across the Ronchigram. We there-
fore consider a small patch of the Ronchigram at a particular
detection angle T, such that Ky = T + Ky for small Kr, and
Taylor series expand:

x (Kr—h) — x (K;—g)~x(T-h)—x(T—g)
+K1.V(x(T—h)—x (T—g))+.... (5)

Thus, the condition for a ‘small’ patch is that it is reason-
able to neglect terms of order K2 and higher. This expan-
sion allows us to Fourier transform Eq. (2) over K;, giving
the coordinates of the delta functions as

St =4V (x (T —g) —x (T —h)), (6)

where St is the coordinate of the delta-function ‘spot” in
the patch at T. As the fringe spacings normally vary slightly
over the patch, the spots are not perfect delta functions. For
spherical aberration, the Fourier transforms of large patches
will resemble ‘comets’ (reference [18] and Fig. 2). In that
case, we consider the head of the comet, which fails when
there is not a single clear maximum.

Equation (6) reveals that the Fourier transform of a small
patch from a Ronchigram will resemble a diffraction pattern
from the same area, but the spot positions will depend on the
local derivatives of the aberration function as well as the re-
ciprocal lattice (g-vectors). This result is remarkable because
it provides a route to measure aberrations from a single crys-
talline Ronchigram. We Fourier transform a series of N small
patches at different angles (T;...Ty) and measure the posi-
tion of the spots (St;...Sty). Equation (6) then relates the
measured spot coordinates to their respective g-vectors and
the derivatives of the aberration function, meaning that a
simple least-squares routine can be used to fit an aberration
function. The problem will be over-determined if more than
two spots are used and a full solution will not be possible if
all the g-vectors are collinear.

To make the fit a linear problem, we assumed that the
g-vectors were known, which is straightforward for known
samples; however, this equation also provides a method to
determine the g-vectors, even when the sample and defo-
cus are both unknown. We measure a spot position as S1r,
change focus by a calibrated step 4C; and measure the posi-
tion of the same spot again as S2r, to give

g = (S2r —Sly) /dC,y. (7)

Put simply, the initial and final positions of the spots will
depend on all of the aberrations, but a pure focus change
will cause a spot to move along its g-vector. Because the
sign of the focus change is known, this method also allows
us to determine the sign of defocus and thus avoid the sign
ambiguity in Eq. (6).

As multiple beam interference was neglected, we now
consider the three-beam result in more detail. Fourier trans-
forming Eq. (3) suggests that there will be additional spots
at

St =%V (x (T —h) —x (T)) and
St=2V(x(T—-g)—x(T). (8)

However, fitting to Eq. (8) did not work well in practice,
probably because we could not separate the {+g, 0} and the
{0, —g} terms. If h = —g, these two terms are equivalent
apart from a shift of origin [18] and can cancel out. As the
two sets of fringes are translated by g, the intensity of the
Fourier transform will be modulated by cos (27S.g) , which
gives the ‘interference fringes’ in Fig. 2. This interference
makes the spot locations harder to determine and provides
a source of errors for the present work. When higher order
aberrations are significant, these interference fringes can be
analyzed to determine the g-vectors (as in [21]).
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Fig. 2. (a) Ronchigram simulation of 4-nm-thick SrTiOs [100]. Defocus = —600 nm, C; = 0.1 mm at 300 kV. (b) The Fourier transforms of a
large patch from (a). (c—f) The Fourier transtorm of small patches from the same simulation at (c) —600, (d) —650, (e) —700 and (f) —750 nm

defocus. The spots are in slightly different positions in each frame.

Instead we consider the Fourier transform of Eq. (4),
where the product of the two cosine functions will give a
convolution between their Fourier transforms. The first term
will give delta functions at

St =+£V(x(T—-h)—x(T-g))/2. 9)

These spots will be convolved with the transform of
the (more slowly varying) second term, which we neglect.
In this work, we fit directly to Eq. (9) including arbi-
trary numbers of spots. For historical reasons, we first tried
to approximate these equations by the second derivatives of
the aberration function, which was found to give a good fit,

but introduces errors from the higher-order aberrations (see
the supplementary data online).

As an initial test of the accuracy of our proposed method,
we performed simulations of Ronchigrams using the code
provided by Kirkland [24] and analyzed them. An example
Ronchigram of SrTiO; viewed down the [100] direction is
shown in Fig. 2, for a thickness of 4 nm, defocus of —600 nm
and C; of 0.1 mm, with other aberrations zero. A script was
used to extract small patches from the simulated images and
Fourier transform them. The spots were located by automat-
ically seeking local maxima near initial estimates for the spot
positions. These estimates are automatically generated and
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Fig. 3. Graphical representations of the spot coordinates measured from the simulation in Fig. 2 using 25 x 25 patches. The intensity of each
pixel represents the shift of the spot in the patch at that angle in the X and Y directions of the [020]- and [002]-type spots, respectively. Each
intensity scale goes from —4 (black) to +4 (white) pixels. These plots closely resemble the second derivatives of the aberration function (see

the supplementary data online).

then approved by the user, who can control which spots are
chosen. The spot coordinates measured for this example are
illustrated in Fig. 3, which uses shades of gray to indicate
changes in the spot positions. We treated the sample as ‘un-
known’ and used a defocus series of four frames separated
by —50-nm steps to probe the errors. The fitted aberrations
are summarized in Table 1 for two different thicknesses and
choices of different spots. The measured defocus was within

~3 nm of the known values, —600 to —750 nm. The C; was
measured as ~0.085 mm in the single worst measurement,
but was normally within a few percent of the known value.
Most other aberrations were measured comparatively well.
We repeated simulations for various combinations of
first-, second- and third-order aberrations. Table 2 summa-
rizes another example measurement under similar condi-
tions, with 20 nm of 2-fold astigmatism and 1000 nm of

Table 1. Aberration coefficients in nm (average + standard deviation) measured using four spots (020, 002, 011, 01-1) for the four-frame
focal series (defocus —600, —650, —700, —750 nm), simulated with C3 = 0.1 mm, other aberrations zero

Thickness Focus offset Astigmatism Three-fold Coma Cs
0.5 nm +2.5 £ 0.07 0.1 +0.06 334+24 81+3.4 98 920 + 177
4 nm +2.7 £ 0.9 0.2 £ 0.01 21+13 2.6 £0.6 86 966 + 1957

Analysis used 5 x 5 patches, each ~16 mrad diameter, spaced by ~6.3 mrad.
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Table 2. Aberration coefficients in nm (average + standard deviation) measured for a four-frame focal series (defocus —600, —650, —700,
—750 nm) simulated with 20-nm astigmatism and 1000-nm 3-fold astigmatism; coma and C3 were zero

Thickness Focus offset Astigmatism Three-fold Coma Cs
0.5 nm +1.7+04 20.5 £ 0.1 1000 £ 11.9 10.2 +4.3 645 + 988
4 nm +7.0 £0.5 20.6 = 0.03 949 + 5.1 232 +21.6 —1600 + 1245

Analysis used the same conditions as in Table 1.

Fig. 4. (Top) Representative extract from a focal series of Ronchi-
grams from Si [112]. (Bottom) The Fourier transforms of 3 x 3
patches (each enlarged by two and cropped to show only the central
area) cut from the corresponding positions from the Ronchigram.
Each patch was 15 mrad across, spaced by 15 mrad.

3-fold astigmatism. Again the measured aberrations
matched the simulated values well. The direction of the 2-
fold astigmatism was correct to ~2° and that of the 3-fold to
better than 1°. The absolute error in the measurement was
larger than the standard deviation, which is partly caused
by the small (~2%) error in measuring the g-vectors. This

error in the g-vectors gave a systematic contribution to
the overall errors, but is interesting because it reveals that
such methods may be sensitive to any lattice distortions of
more than a few pm. Further simulations indicated that
sample thicknesses up to 20 nm could be used. At large
thicknesses, the spots became more diffuse, which gave a
dependence of the accuracy on the sample thickness that
could be investigated in future.

To further test our method, we used experimental data
from several aberration-corrected instruments. A script was
used to acquire Ronchigrams at regular focus intervals and
measure the aberrations. We used the known lattice spacing
d to provide the calibration of the focus steps. If the only
significant aberration is defocus C, for a spot radius S, we
find that

C, = Sd. (10)

Equation (10) also provides a fast method to measure
chromatic aberration (by changing accelerating voltage),
which will be important for C.-corrected instruments. The
relativistically corrected value of C. for the VG Microscope’s
HB603U was measured as 1.6 mm and the measured value
for the FEI Titan 80-300 also agreed well with the value pro-
vided by the manufacturer. The largest uncertainty was the
accuracy of the camera length calibrations.

Figure 4 shows an example Si [112] Ronchigram taken
on the FEI Titan 80-300 with the CEOS aberration correc-
tor running. Following the change from the tuning sam-
ple to the Si sample, we expected to find astigmatism and
coma. In this example, the astigmatism was measured as
~5 nm with a standard deviation of <1 nm over the fo-
cus range used (~400-550-nm defocus); see Table 3. The
3-fold astigmatism and coma were measured as a few hun-
dred nm, with standard deviations of the order of tens of nm.
The C; had been zeroed using the CEOS software and so it
is not completely clear if the measurement of a few pm is
real or just reflects the accuracy of the measurement under
the conditions used. We found a dependence of the mea-
sured aberrations on patch size, which suggests that there
may still be some residual errors. For patches with fewer
pixels, the uncertainty due to the finite pixel size was sig-
nificant. For larger patches, the random errors were smaller,
although the multiple-beam interference effects were more
visible in the transforms, which could contribute to system-
atic errors. The accuracy could be improved by optimizing
the camera length or using a higher quality camera with
more pixels. Despite the approximations made, the stan-
dard deviations are of a similar order to those obtained with
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. Aberration coefficients in nm (average
focal series with patches spaced by 3 mrad

standard deviation) measured from

frames, using four spots, from an experimental

Patch pixels Focus step Astigmatism Three-fold Coma Cs3
128 x 128 13.9+1.1 43+13 141 £+ 29 434 + 79 —15 942 £ 5329
256 x 256 14.1 £1.0 4.5+03 137 £ 20 543 + 46 —9636 + 2867

For 256 pixels, the analysis used 9 x 9 patches, each with ~15 mrad diameter; and for 128 pixels, 7 x 7 patches were used, each with ~7.5

mrad diameter.

current versions of either the CEOS [5] or the Nion [6] soft-
ware packages. The magnitudes of the measured aberrations
were consistent with these established methods, although
the acquisition time was substantially faster. We anticipate
that further developments in the implementation, such as
an improved spot-locating algorithm, will produce more ac-
curate measurements in future.

In conclusion, we have demonstrated a method to mea-
sure the aberration function from the electron Ronchi-
gram of a crystalline specimen. The advantage over previ-
ous methods is that it can use unknown, crystalline samples
and faster acquisition times. When the sample and defocus
are both unknown, two Ronchigrams are needed but once
the vectors describing the sample have been measured, this
method can measure the aberration function from a single
Ronchigram. Another potential use is to dynamically moni-
tor aberrations after each frame in a depth series [25], with
very little overhead, since the Ronchigram acquisition time
of 0.1-0.5 s, is 10-100 times faster than a typical STEM im-
age. The similarity of the description in Eq. (1) to a lateral
shearing interferometer suggests that this method might be
applicable to other fields, for example as a lens test [10] in
light optics.
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